EIECTRONCS COMPUTING COMMUNICATIONS BRO:DGASTING

DIOATI VIII

The TC82-a significant development in temperature controlled soldering

GOULD OSCILOSCOPES SETA HICHER STA DARD

A tough, professional instrument with competitors; \star Continuously Comprehensive data is yours for the you can trust - at a price you can variable amplitier sensitivity with no asking. On this tough little 'scope. afford! Built to do more - safely,
eliably and longer.
Complete with a 2-year guarantee. This robust and highly portable tions in test, production, service and $R \& D$ areas.
As some of the specification highlights make clear: \star True 20 MHz display amplitude at full bandwidth 10614

An impression of crisis control,
created by Geof Barrold linked
with R E Youn's article on the created by Geort barrod,
with R. . Young's article on the
subject in this issue.

NEXT MONTH

Line printer - an interface for driving a 40-column, dot-matrix, mechanis from a 28D
GPIB/serial interface Chris Jay demonstrates an 'economical and practical' solution with talker/listener capability.

Light pen - reads screen characters, in memorymapped display
and returns address. Design uses fibre-optic cable.

 Centre, Hopton, Street, London SEl
Available on microfim; please contac
 to EEP General Saless Dopt.t. Duadrant
House, The Quadrant, Sutton, Surre) SM2 5AS. Advertising offices: Quad
Editionial \& Ader
rant House, The Quadrant, Sutton, Surrev SM2 5AS:
Telephones:
Teditorial
01-661
01
 Subscription rates: 1 year $£ 12$ UK and
$£ 15$ outside UK.
 Outside UK. Quadrant House, The Quad
Distribution: Qun,
rant, Sutton, Surrey SM2 5 SAS. Tele rant, Sutton, Surrey SM2 5AS. Tele-
phone. 1.61 3000
Subscriptions. Oakield

 Suite 1217 , New York, NY 10022. 2nd-
class postage paid at New York. ${ }^{\circ} \mathrm{P}$ IPC Business Press Ltd, 1982 ISSN
00436062 WIRELESS WORLD JUNE 1982

wireless

JUNE 1982 Vol 88 No 1557

35 GRaven IMages, NEW STYLE

36 CRISIS CONTROL
by R. E. Young
40 80-100 WART MOSFET AUOIO AMPLIFER by John Linsley Hood
42 LITERATURE RECEIVED
43 DIGITAL FILTER DESIGN - 2
43 by B. M. G. Cheetham and P. Hughes
47 LETIERS TO THE EDITOR
51 MICRO-CONTROLLED RADIO-CODE CLOCK by N. E. Sand
55 DIGITAL AUDIO SIGNAL PROCESSING BY microcomputer by J. B. Watson
60 CIRCUIT IDEAS
62 Digital frequencr svithesizer
67 NEWS OF THE MONTH
70 LEAKY FEEDER COMMUNICATION
by D. J. R. Martin
76 MICROPROCESSOR CONTROLLED LIGHTING SYSTEM by John D. H. White and Nigel M. Allinson

80 HERETICS GUIDE TO MODERN PHYSICS by W. A. Scott Murray

82 ERROR-CORRECTING SOFTWARE by N . Darwood
84 COMMUNICATIONS
86 NRZ RECORDING
88 PARIS COMPONENTS SHOW by M. E. Eccles
90 NEW PRODUCTS
114 APPOINTMENTS

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

> Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages
side by side in full colour. See Prestel 200650 .

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM
pricing available.

Cotswold Electronics Ltd.
Unit 7 1, Kingsville Road, Kingssilich Trading Estate, Cheltenham GL51 9NX

$$
\text { Te: :0242-41313 Telex: } 897106
$$

WW - 087 FOR FURTHER DETALL

ALSO AVAILABLE:
A COMPLETE RANGE OF INOUSTRALL AEROSOL SPRAYS

Details from:
Special Products Distributors Ltut.

WW - 083 FOR FURTHER DETAILS

Hectronic Brokers

 Second User Test Equipment. Makes enginears smile without making accountants cry.Electronic Brokers are Europe's leading Second User Equipment Company. We carry
large stocks of the very latest test equipment large stocks of the very latest test equipmen which is refurbished in our own service laboratories and cal

manufacturer's sales specifications. When you buy used equipment from Electronic waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

 nclude VAT or carriage.

 Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G

ww - 068 FOR FURTHER DETAILS

WW - 088 FOR FURTHER DETALLS

Caracal offer you the U.K.'s widest range of high-quality static inverters. Our inverters are used in many countries throughout the world wherever a reliable and stable source
of A.C. power is needed for computers, communications, instrumentation, etc. They are also frequently used for mobile or
available.
Caracal inverters employ modern pulse width modulation Caracal inverters employ modern pulse width modulation
technology which is replacing obsolescent tuned-type ferro resonant) inverters, by giving higher efficiency throughou
the load range, very low standby current, and lower weight. We have a large range of models and options, at competitive xact requirements.

19-INCH RACK MOUNTING Now all inverters are also available in 19-inch chassis form -

P年 CARACAL POWER PRODUCTS LIMITED
42-44 SHORTMEAD STREET, BIGGLESWADE, BEDFORDSHIRE Telephone: 076781361

Ameron INDUSTRIAL MUSCLE

\star OUTPUT POWER IN EXCESS OF 1.5 KW W INTO 2.75 Ohm LOAD \star D.C. OUTPUT 20 AMP.

^ HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1 kW INTO 6 OSCILLATORS MLES: CONSTANT VOLTAGE/CURRENT, PRECISIO \star UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION \star OUTPUTMATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.

* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE
INTO ANY LOAD Ł TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO
t INTERLOCK CAPABILITY FOR UP TO EIGHTUNITS.
 \# 3-YEAR PARTS AND LABOUR WARANTY.
\star UNITS AVAILABLE FROM $100 \mathrm{VA}-12 \mathrm{KVA}$.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for
days delivery. Other Ranges and special scales can be inade to order.

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 Telex: 892301 HARTRO G. WW - 079 FOR FURTHER DETAILS

Croydon Micros

***Nsocock**

Over $£ 50$ worth of FREE progs. including BASIC tutorial, 10 games, home finance, and GEMINI tape database.

01-689 4349

\rightarrow Now in our new premises $\rightarrow \star$ 20-28 Whitehorse Rd., Croydon CR9 2NA

ALSO - PC1500 Pocket Computer - $£ 145$
Prices include VAT FRONTREALM LTD. (T/A)

We supply

 PMME for industry

HM 307
OSCILLOSCOPE

felizble triggering up to $30 \mathrm{MHz} \mathbf{\Sigma 1 3 8 . 0 0}$

HM412-5
Dual Trace. DC to $20 \mathrm{MHH} 8 \times 10 \mathrm{~cm}$
display with internal graticule. Rise time
17.5ns. Variable input 2 mv -20V/cm.
.

The above prices or VAT 15%.

Simple Phone or Telex your order for immediate dispatch.
Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 FOR FURTHER detalls

moulded nylonTRANSIPILLARS'

Ww - 052 FOR FURTHER DETALS

MINI-DISK DRIVE TEST BOX

A simple aid to test and alignment of drives without tying up valuable system time.
Neatly presented in handy case with leads and connectors for 2 drives. Needs +12 V and +5 V through standard drive connectors (provided). Circle number for further details.

Price $£ 135$ + carriage and VAT
MELKUIST LTD.
35A Guildford Street, Luton LU1 2NO
Tel: 0582/416028
Telex: 825828 MELKST G
WW - 048 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

PNEUMATIC TELESCOPIC MASTS

HILOMAST LIMITED HE STREET HEYBRIDGE - MALDON
 Tel. MALDON (0621) 56480
TELEX NO. 995855 Ww - 054 FOR FURTHER DETAILŜ meles worid june 1982

EGBTOLE BroAES $D=C S A L E$
a selection from our huge stocks

PERIPHERALS \& OPTIONS

 HEM SEDOP PURGHASE
Special purchase
of Hazeltine 1500
series VDUs -
manufacturers
surplus - ALL
BRANDNEW
BOXED

HAZELTINE 1510-SAVE £330

* 24×80 Upper/Lower case ASCII
* 7×10 dot matrix $*$ Dual intensity
* 8 Switch-Selectable baud rates 110/9600 baud * Full/Half duplex plus format mode
* Remote XY Cursor addressing * $12^{\prime \prime}$ non-glare screen * EIA

Manufacturer's ist pric
OUR PRICE £550
HAZELTINE 1520 - SAVE £425
All the features of the 1510 plus buffered serial/parallel printer interface. Manufacturer's list price £1050

OUR PRICE £625

Also arilable - Reconditioned Hazeltine H2000 Also available-Reconditioned
VDUs @ $£ 299$ while stocks last
Electronic Brokers Ltd., $61 / 65$ Kings Cross Road, London WC1X 9LN. Tel:01-2783461.Telex 298694

EPROM PROGRAMMER

2716 Н HEXKEYPAD
2716 -POWERFLLEDTOR 2732 : TVMMONTORRIDSPLAY 2532 C CASSETTEBACK-UP 2532 © ROMLIATOR SOFTY STANDS ALONE

E169 + VAT, EX-STOCK, BY RETURN
DATAMAN DESIGNS, LOMBARD HOUSE
DORCHESTER, DORSET, DTI IRX. (0305)68066

Hitachi Oscilloscopes performance, reliability, exceptional value and immediate delivery:

The MICRO PROFESSOR solvesthe'mystery' ofmicro-processors.

Prices
from
600
300
200
2000
755
500
200
2000
900

SPECIAL OFFER

MARCONI TF2432
560 MHz Frequency Counter
$10 \mathrm{~Hz}-560 \mathrm{MHz}, 0.1 \mathrm{~Hz}$ Resolution. 8 digit E.D. readout. 10 mV sensitivity, automat
a.g.c. on input. Display hold facility. £275
PHILIPS PM6456
Stereo F.M. Generator
For testing and aligning FM tuners and receivers. Separate L \& R signals. Internal and External modulation facilities

X- al controlled pilot signal
Adjustable multiplex signal
Tunable 100 MHz R.F. signal
£230

All items have a 12 month guarantee unless otherwise stated

 Stereo $F M$ Generator
$H D E C$ SCHWA H1A AnETO
GENER Phasemeter 5 Hz -500
GER ER HEWLETT PACKARD

\qquad

 MULTIMETIICS

Prices
from
为

14000
975
750
825

\qquad

$\rightarrow \stackrel{\text { Bu }}{ }$

550
550
51150
1350
1
1350

$$
\begin{gathered}
\text { Low cost corner } \\
\text { T500 } \\
\text { Items in this box have } 30 \text { day } \\
\text { guarantee only. }
\end{gathered}
$$

${ }^{62}$ 50. Full details and specification of equipment listed available. Because of long copy dates this list is not comprehensive - ring for 62 inventory update or tell us your SPECIFIC NEEDS. Hours Monday to Friday, 9.30 a.m.-5 p.m. (lunch, 1-2 p.m.). Prices exclude delivery ${ }_{32}^{27}$ We take Access or Visa.

Carson Electronics Ltd 01-267 5311

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS
 POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS

 $\mathfrak{y y}$
 electronic products ww - 043 FOR FURTHER DETALS

Siliconix invented the MOSPOWER FET game. So, not surprisingly we have a tradition of firsts. First with a medium power MOSPOWER FET in TO-202 packages; first with low
cost plastic devices in TO-237 packages; first with n and cost plastic devices in TO-237 pact
First for versatility as well. The range includes silicon-gate metal gate, and high voltage DMOS capability in our double diffused MOS technology offered in nine different package configurations. So you can have the winning combination fo your application - whether it's
processing or process control.

9 Siliconix
The Discovery Company

Just 50 p. will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor
CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP
DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
\star Lowest prices - Largest stocks
\star Choose your DIY Hifi Speakers in the comfort \star (Customer operated demonstration facilities)
\star Access . Visa Ample parking \star American Express accepted \star

WW - 089 FOR FURTHER DETAILS

WW - 045 FOR FURTHER DETAILS

The Professionals

VALVES,SEMICONDUCTORS

 \& COMPONENTS for:-Communications, Displays, Radar, Computer,
Audio etc.

Hal| Electric Limited

Electron House
 Orpington, Kent Bras 30.J
Telepione:
Orpington 27093 Teleppione: Orpi
MIN DEF APPROVAL 052900531

The Professional Choice

ww - 011 For further detalis

New From Barmeco

Introducing a new 3 element H.F. Tribanda with prove

THE WORLD RANGER TRIBANDER

Designed, engineered and manufactured in the U.K. Use
of high-quality materials ensures high electrical stability of high-quality materials ensures high electrical stability
under all weather conditions with exceptional mechaniunder all weather conditions with exceptional mechan
cal rigidity and strength. All traps are high grade P.T.F.E. formers with insulated windings.
Specification:
Frequency
Impedance
Impedance
R.F. Power (max.)
VSWR (at resonance) Forward gain Front-to-Back Ratio Wind Survival Turning Radius Longest elemen Boom length
Net Weight

10,15 \& 20 metre

 52 ohms (AM) 2 kW (PEP) Less than 2.0 25 db31.75 mm t 31.75 mm to 41.30 mm 80 mph
$14^{\prime}-10^{\prime \prime}$
20^{\prime} 12^{\prime}
21 lbs
$£ 120$ complete with Balun including carriage and VAT Balun available at $£ 15$ each

BARNET METAL CAR AND CO. LIMITED Tewin Road, Welwyn Garden City, Hertfordshire

Telephone: Welwyn Garden City 24327
Telex: 28125. Cable: BARMECO
corour 1.risoua K:1मIF7E0
The pocket Digital Multimeter by which

others are judged.
 $2:: \frac{p i s}{11}$

And generous discounts start at 10 units; 5\%

Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price:
Only one calibration adjustment.
One year guarantee on spec.
25 ranges and five functions ohms, DC and AC volts and amps. 10 amp range.
$100 \mathrm{~V}, 1 \mathrm{~A}, 0.1 \Omega$ sensitivity.
20,000 hour M.T.B.F.
All this is backed by the immense knowhow of a specialist company with an enviable reputation for test equipment $31 / 2$ spanning almost all requirements from $31 / 2$ to $51 / 2$ digits.
one?
simple. Just send off the coupon enclosing cheque or postal order. And

The Keithley 130 - the D.M.M. that won't stretch your pocket!

POWER UNITS Now available with
3 OUTPUTS
DEvELOPMENT
senvicing

WW - 086 FOR FURTHER DETALLS

Testing..
 Testing.. Testing... $\square: \square: \square$ anwherel

FM/AM 1000s with Spectrum Analyser - we call it the SUPER-S A portable communications service monito from IFR,
light enough to carry anw where and good enough for most two way radio system tests.

 frequency error meter- and up to five
who could be doing something else!
A PRACTICAL TOP UP!
MM-100 MULTI-METER
 includes a modified probe. PB-114, and a built in speaker
unit with independent volume control for audible response unit with ndependent volume control for audible response
to signal measurement. This practical top up' will perform
the following functions. the following functions.
Sinad: Measurements for 1 kHz Distortion: $: \pm 2030 \%$ Hz)
DC Volts: Up to 300 volts and up to 800 volts when the $\times 10$ probe is used AC Volts: 600 VRMS maximum for frequencies between
25
25 Hz and 25 kHz Onms Using the modified probe, part number PB-114
Ohms can be measurec on scales $X 1$ to $x 10 \mathrm{~K}$ Ohms can be measured on scales.
\%AM Measured on the RF signal appied to the \%AM Measured
OPTIONAL ACCESSORIES
A choice of R... power attenuators and protective
carrving cases.
For further information contact Mike Taylor
 ETALLS

MICROCOMPUTER COMPONENTS

MIDWICH COMPUTERCO. LTD.
DEPT WW, HEWITT HOUSE, NORTHGATE STREE BUAY ST. EDMUNDS, SUFFOLK 1P33 1HQ
TELEX: 817670 WW - 013 FOR FURTHER DETAILS

NICADS: UK'S LOWEST PRICES

Ww - 009 FOR FURTHER DETALLS

WRONG TIME?

 MSF CLLCK is ALWAYS CORRECT - never gains or loses, SELFSETTNG at witchon, 8 digits show Dote, Hours, Minutes and
Seconds, auto GMT/BST and leap year, can expand to Years, Seconds, auto GMT/BST and leap Year, can expand to Years,
Months, Weekdays and Miliseconds. also parallel BCD outut or
Mor

Each fun-to-build kit (ready made to order) includes all parts, printed
aircuit, cases, postage, etc, instructions, money back assurarnce G GET circuit, case,
yours NOW.

CAMBRIDGE KITS
45 (WF) Old School Lane, Milton, Cambridge. Tel. 860150

THE MOST
ECONOMICALLY - PRICED
PROFESSIONAL EPROM PROGRAMMERS AROUND
SUITABLE FOR EPROMS
$2708,2516,2716,2532,2732,2732 A$ plus option for 2564,2764

The only full-featured ECL Logic Probe...available now!

G.S.C. (UK) Limited, Dept. 7 Y Unit 1, Shire Hill Industrial Estate
Saffron Walden, Essex CB113A Saffron Walden, Essex CB11 3AQ
Telephone: Saffron Walden (0799) 21682 Telex: 817477

「..S.C. (UK) Limited, Dept. TY, Unit 1, Shire Hill Industrial Estate, Saftron Walden, Essex CB1i 3AO. 1
 Nam

Tenclose cheque/P.O. for E

 wW - 026 FOR FURTHER details

Marconi Type R1020 Hinged antenna column.

Easy to raise
Easy to lower

OTHER MARCONI SUPPORT STRUCTURES
Include the MATHWEB* Lattice Antenna Mast Type
R1010, and the Triangular Section Tubular Steel Self
Supporting Tower Type R1060.
For details of these and other Marconi Antennas products please contact Chris Pettitt, Marketing Manager, Antenna Systems Division.
*MATHWEB is a registered rademark or the BP Group

Marconi

Antennas
Marconi Communications Systems Limited
ane Works, Waterhouse Lane, Chelmsford CM1 20X, England
Tel: 024567111 Telex: 99108
$\mathbf{w w}-\mathbf{0 2 5}$ FOR FURTHER DETALL

SEND NOW FOR PRICE LISTS SHOWING QUANTITY DISCOUNTS

 ww - 072 FOR FURTHER DETALLS

WIRELESS WORLD JUNE 1982

Memotech's New Memory System for the $\mathrm{ZX81}$ Itgrowsas youprogress

OUTPUT POWER IN EXCESS OF 500 WATTS PE CHANNEL INTO 2 OHMS
OR IN EXCESS OF 1 KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
TO 100 KHZ AT 1 KW INTO 6 OHMS
INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE RANGE OF SPECIALISED USES
output matching transformers available TO MATCH VIRTUALLY ANY LOAD
unconditionally stable into any load BASIC PRICE INCLUDING BRIDGE MODE SWITCHING AND HANDLES £455

S \& R AMPLIFICATION
6 Tanners Hill, London S.E. Telephone: 01-692 2009

WW - 084 FOR FURTHER DETALS

МЕМОРАН 64 H

Memopak 16K Memory Jxtension - 239.95 incl.VAT

It a fact that the $\mathrm{Z} \times 81$ has revolutionised home computing

 and coupled with the new Memopak 16K it gives you amassive 16K of Directly Addressable RAM. which is neither switched nor paged. With the adddition of the Memopak 16 K your ZX81's enlarged memory capacity will enable it to execute longer and more sophisticated programs. and to hold an extended database. The 16 K and 64 K Memopaks come in attractive. custom-
designed and engineered cases which fit snugly on to the back of the ZX81. giving firm, wobble-free connections.
Coming Soon...

All these products are designed to fit 'piggy-back fashion on to each other. and use the Sinclar power supply. WATCH THIS SPACE for further details. We regret we are as yet
unable to accept orders or enquiries concerning these products unable to accept orders or enquiries concerning these product

- but well let you know as soon as they become available.

Memopak 64K Memory Extension
 £79.00 indlVAT

The 64 K Memopak is a pack which extends the memory of
the ZX 81 by a further 56 K . and together with the $\mathrm{ZX81}$ gives a
he ZX81 by a further 56K. and together with the ZX81 gives addressable. The unit is user transparent and accepts basic commands such as 10 DIM A(9000).
BREAKDOWN OF MEMORY AREAS
${ }_{8}^{0-8 K}$. . . Sinclair ROM
locks to lo lhis section of memory switches in or out in $4 K$ contents during cassette loads allows com holds its contents during cassette loads. allows communication
language routines.
$16-32 \mathrm{~K}$...This area can be used for basic programmes and
assembly language routines.
$32-64 \mathrm{~K} \ldots 32 \mathrm{~K}$ of RAM memory for basic variables and large
arrays.
With the Memopak 64K extension the ZX81 is transformed into a powerful computer. suitable for business. leisure and educational use, at a fraction of the cost of comparable
Unique 3 monthtrade-in offer!
When your programming needs have outgrown the capacity
provided by 16 K RAM. and you find it necessary to further extend your ZX81's capacity. we will take back your 16 K Memopak and allow a discount of $£ 15.00$ against your purchase of our 64 K model. ${ }^{*}$.
We reserve the right to reject. for discounting purposes. units which
have been either opened or damiaged in any way have been either opened or dariaged in any way.
I Please make debit my Accessisararclaycard" account number

Please delite whichever does not appiy
SIGNATURE \qquad DATE

	Quantity	Price	Total
16K RAM, Assembled_		$£ 39.95$	
64K RAM, Assembled		$£ 79: 00$	
Postage			

I
We want to be sure you are satisfied with your Memopak - so we offer a 14-day money back Guarantee on all our products. We want tobe surie yourare saitsified with your Memopak- -sowe oftera 14 day money back k Guarantee on al our rooducts.
 WIRELESS WORLD JUNE 1982

LEVELL
PORTABLE INSTRUMENTS

LEVELL A.C. MICROVOLTMETERS AND BROADBAND VOLTMETERS are part of our comprehensive range of test and measuring instrumentr.
These voltmeters give accurate readings over a wide range of frequencies These voltmeters give accurate readings over a wide range of frequencies.
They are housed in robust steel cases and are powered by long life batteries
Mains power units and leather carrying cases are available as optional extras.

A.C. MICROVOLTMETERS

LEVELL ELECTRONICS LTD. Moxon Street Barnet Herts. Tel 01-449 5028/440 8686

RADIOCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide
arcourater secure and completely automatic time/calendar or synchro-
nisation systems.

Automatic master clock and slave controller.
Synchronisation of separate saquipment and events.
Programmable energy management Programmable energy management system.
Computer clock/calendar with battery backup. Computer clock/calendar with batt
Data logging and time recording.
Process and enuipment control.
Process and equipment control.
Broadcasting Astronomy, Navigation

- Batellite tracking.
if you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive
Ruistip, Middlesex. Ruislip 76962
WW - 078 FOR FURTHER DETALS
 or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of six months f
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 Qermn y: W.E.E. Sartach
GmbH. KKol

 s.inatin Misuew
 s.a.3. Viveracinin
20124 Milano

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Enquiry Service for Professional Readers	
WW.	WW.... WW
ww	ww.... ww
ww	ww.... ww
ww	ww.... ww
ww.	ww.... ww
ww	ww.... ww
ww.	ww.... ww
	ww.... ww
ww	ww.... ww
ww.	ww.... ww
	ww.... ww
ww.	ww.... wW

WIRELESS WORLD Wireless World, June 1982 wW 266 Please arrange for me to receive further details of the products listed the appropriate retal
space provided.
Name .
Narie of Company
Address.

Telephone Number .

Position in company .
Nature of Company/Business
. of emmioyees at this establishment.
VALID FOR SIX MONTHS ONLY

Wireless World:

 Subscription Order FormTo become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Shure brings
intelligibility \& reliability to professional communications microphones
Experienced operators recognize that the audio quality of the transmitter is limited by the quality of the input from the microphone. On the air, there's no mistaking the crisp, intelligib
messages from Shure microphones.
Shure microphones have been the overwhelming choice of Shore microphones have been he overwherming choice of years. Many milestone improvements developed for demanding ARMO-DUR ${ }^{\ominus}$ Case: Lightweight, immune to oil ARmO-DURA Case: Lightweight, immune to oil, , rrease,
salt spray, sun, rust, and corrosion. Prevents RF burn! "Million Cycle" leaf switch: Just one of the crucial wear points Shure-tested to ensure reliability and extraordinary durability.
TRIPLE-FLEX® Cable: Provides three or four times longer flex life
 CONTROLLED MAGNETIC® or Dynamic Transducer: The exclusive Shure-designed super-rugged transducers that give excellent voice intelligibility and super reliability. To improve your on-air intelligibility we suggest
the following Shure Microphones:

Fixed Station

	Mobile Application	Fixed Station Application
SSB	$414 A^{*}$ $407 A^{*}$ $577 \mathrm{~A}^{* *}$	444 D $526 T$ Series II
FM	$414 \mathrm{~B}^{*}$ $507 \mathrm{~B}^{*}$ $577 \mathrm{~B}^{* *}$	450
$526 T$ Series II		

"General recommendation: Consult equipme
manual for orrect microphone inpedance.
$*$ Noise-cancelling.
SHURE Hand-Held Mobile Mics

Communications Microphones by . . .

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881
wW - 032 FOR FURTHER DETAILS

SHURE

pedance: the 5 impedance.

wireless world

Editor: PHILIP DARRINGTON
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 8639
Communications Editor: MARTIN ECCLES 01-661 8638
News Editor: DAVID SCOBIE 01-661 8632
Drawing Office Manager: ROGER GOODMAN
Technical Illustrator: BETTY PALMER
Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130
$\begin{aligned} & \text { DAVID DISLEY } \\ & 01-6618641 \end{aligned}$
$\begin{aligned} & \text { BARBARA MILLER } \\ & 01-6618640 \end{aligned}$
Northern Sales: HARRY AIKEN 061-872 8861
Midland Sales: BASIL McGOWAN 021-356 4838
Group Classified Manager: BRIAN DURRANT 01-661 3106
IAN FAUX 01-661 3033
Production: BRIAN BANNISTER (Make-up and copy) $01-6618648$ 01-661 8648

Graven images, new style

When Lech Walesa, the Polish union leader, was asked by the military regime to appear on television and speak for them,
he replied, according to a report, "You will have to cut my body into a thousand pieces first". This vodently negative response speaks louder of the power of televison than all the strivings of young hopefuls in the entertainment business desperate to claw their way in front of the cameras. It also speaks loudly of the exclusive control of a whole broadcasting
system by one authority. But state control only exemplifies, in a brutal way, the fact that television is a highly selective, and therefore exclusive, medium in the hands of anyone who uses it.
Consider first how reality is excluded by operating in the home. The images on the screen are produced by means of transmitted light from glowing phosphor sources, whereas we normally see mos things in the world by reflected light. real world often has to be interpreted in silence. The pictures are viewed in the banal surroundings of household objects and events: furious drama may work itself
out on the screen immediately next to plate of sandwiches and a sleeping cat. On this screen the people and objects are miniatures, and the convergence feedback of our binocular vision tells us that the images are not the same as the originals
seen at a distance. Overall the effect is that of a brightly-lit toy theatre. Within these physical limitations the deliberately selective processes of the broadcaster are operating. There is an old adage that newspapers can't tell you what
to think but they can tell you what to think about. Selection and exclusion begin on television with the overall policy of the broadcaster and are implemented first in programme planning and then in the political discussions, for example, the agenda is set in advance: any controversy is held within previously determined limits which can be enforced by editing the recording.
of the visual presenage" and conventions of the visual presentation, though, that
selection and exclusion are seen most immediately. First the sequence of shots is
selected. Then each shot is structured by variety of artifices: by choice of duration, from whighting, the angle and distanc recise meaning or mood which the viewe s expected to attach to the resulting images is fixed by the use of sound. Speech nd music are very specific One result of this concentration o selective processes is a distancing or
alienation of the viewer from normal experience. Jonathan Miller, the television producer and man of many other parts, describes it well in his book on Marsha presents, he says, are "curiously dissociated from all other senses. The viewer sits watching them all in the drab comfort of his own home, cut off from the pain, heat and smell of what is actually All these effects serve to distance the viewer from the scenes which he is watching, and eventually he falls into the unconscious belief that the events which happen on ty are going on in some activity. The alienating effect is magnified by the fact that the tv screen reduces all images to the same visual quality. Atrocity and entertainment alternate with one another on the same rectangle of bulging
glass. Comedy and politics merge into one continuous ribbon of transmission."
Perhaps what Miller describes is the result of the most powerful selective process of all - in the mind of the viewer. If we seem to go into an hypnotic trance when watching television it is because we have involuntarily agreed to suspen
judgement on the reality of what is appearing on the screen. We have colluded with the modern graver of images in allowing ourselves to be transported by his art, shutting out our normal, hard-headed sceptical selves. In this irrational state of
suspended belief the contrived images and sounds become more 'real' to us than the real world. Temporarily we can be persuaded of anything. This mental state, and how to produce it, is well understood by television playwrights, propagand
and makers of commercials. The unperceived surrender of the mind is where the real power of the medium lies.

There have been occasions in large control complexes when the amount of information presented to controllers has been so vast and, possibly, suspect, that operators have found of malfunctions and the level of stress on operators.

The Senior Shift Engineer was more bewil "ered than horrified when he answered the "panic" call to the control room and saw along the almost infinite assembly of panels, obviously not knowing in the least what was going on, and deafened by the
ceaseless and ever-growing noise of the alarms. Full horror was to come almost immediately when he realised that hordes of men were surging into the room from all over the huge plant, summoned in a last
desperate attempt to find out which, if any, of the meters and indicators were "telling the truth".

Fictitious?
erhaps. Irrelevant? - no, for here is an extract from an account of such a catastrophic 'Incident': ". . . the operators and by signs of an apparent excess of ater . . All the events were accompanied by an unhelpful cacophony of about 100 alarms sounding off, distracting the operators as they faced panel upon panel of red, green and amber lights and dials indi-
cating entirely unexpected combinations of conditions, and as they tried to grasp the significance of the mystifying changes that were happening .
This description of a 'developed' crisis situation is taken from the masterly sumbe thought of as the sole example of the㱜e-scale industrial disaster - the Three hie Island accident. In actual fact, this ear-catastrophic type of accident, with its perienced in many industrialized countries
byr. . Young
B.Sc. (Eng.), M.R.Ae.S., F.I.E.E.
in the world, but it was not until "Three Mile Island" had occurred that public awareness of the dangers involved becam much more apparent. At the same tim steps to introduce improved safety precau tions were being taken at both national and produced a Directive in 1980 aimed a avoiding major industrial disasters, and the Atomic Energy Agency called an inter national conference in the same year to harmonize nuclea
worldwide. worldwide.

Both technical and political interests ow realize the need to provide additional entirely new, safeguards in the operationa design of large industrial complexes. Ts he 'total' approach to high-risk install ions in particular becomes clear, and ha een brought out in what amounts to pubic debate, largely critical in nature
This critical element has been especially marked in relation to "Three Mile Island blamed for the accident; and with strong attacks being made, in effect, not only on he operators themselves but on their election and training. It is only when on in the light of 'crisis control' and allied considerations ${ }^{2}$ that an entirely different picture emerges, which can be largely summarized by the statement that within
the circumstances in which they were operat
ing, the control engineers at Three Mile Island could not have achieved more than hey did.
Before going into the way in which measurement and other information was pre and into the whole question of the 'good ess' (integrity) of this information, it necessary to look at the state in which hese engineers found themselves. It was, a sense utterly fluid and had featur he words of the Cottrell acount ". . . (they were) faced suddenly with a tally strange combination of events . . receded by " . . . (being) misled . . . be use of a false indicator . . . and by signs n apparent excess of water... of the final full emergency - stage of an inciden carrying high potential risk, where th ontrol staff come to the chillin information somewhere and that they have o possible means of finding out where urthermore, as far as their control of the lant is concerned, they are completely out of contact with it; and, added to this, all o be treated as totally suspect.
Thus it has to be recognized that in such circumstances the stress to which the engi eers are subjected can only be described as extreme in the full sense of the word. producing the emergency are entirely unoreseen, it becomes clear that it is vir tually impossible to predict how any indi"there is nothing to get hold of",

IRELESS WORLD JUNE 1982

Nevertheless, there are two related areas where experience can be quoted whic bears very positively on this general ques ion of behaviour under stress.
The first of these areas is in the field o 'control room' type operations carried ou Secondly, it is not usually realized that in World War II, 'ultimate crisis control' was carried out under these hostile conditions This was with extensive integrated broad casting networks under central master
control and with large radar command systems, which became, in effect, the equivalent of modern high-risk installations. As will be treated in more detail in Par 2 of this article, observation has led to a number of conclusions on unexpected ing people for it.
The most significant of these conclusions was that under such stress, one or other of two conditions $-\mathbf{A}$ or $\mathbf{B}-$ was state was not developed, where 'panic' is state was not developed, where 'panic' is
differentiated from conditions A and B by being "unreasoning" and "sudden" in nature.
Briefly, condition A is one in which despite the severe stress - the person the outside world is concerned) as before he incident occurred. As will be indicated in Part 2, it is suggested that methods of training and preparation for this condition
should be largely 'subliminal' in nature,
e. without the training mechanism bein really obvious.
One of the pearanc A and B is the virtual disap ce. all initis of he ability to take action, cases "leadership by cases "leadership by example" can restor surface" from this point of view. In practical terms, they appear not to be in a state of shock, as it is generally understood. However, it is in the almost invariable change in facial expression to the blank working in that field, which is most char acteristic in Condition B. The 'mentally handicapped look' and other relevant as pects of that complaint will be discussed which has been in progress for a number of years. This programme, conducted essentially on a voluntary basis, has nevertheless attracted an increasing amount of interest, particularly during the last two years; and lished between observations made in one field and 'practice' in the other. Examples of such correlation include 'thinking fatigue' which is relevant to the design of data presentation and ther equipment for

Fig. 1. 'Data-marshalling' type of controlroom, proposeded for aircraft testing. Overall situation on wall diagram is broken down
on operator's screens.
crisis control, and which appears as major problem with the mentally hand capped.
Thinki
fatigue produced my be defined as mental activity, i.e. where several ideas (lines of thought) have to be carried simultaneously and coordinated. Instances are a complex, interacting, plot, or by a pilo landing an aircraft under adverse conditions with all the controls having to be operated simultaneously and in relation to a number of rapidly changing events. of Wireless World last year (1981) as "A engineer preparing for or taking part in highly technical and diversified interna-
tional conference", tional conference".
It may be noted that the direction of
spin-off flow' in this 'spin-off flow' in this area has been largely sign in that the effects of 'thinking fatigue can actually be seen with the former, whereas it tends to be regarded as almost hypothetical in the ordinary world. In at this point, viz. data marshalling (to be described in the next section), the flow has been mainly from the technical side towards mental handicap. This flow tends to become two-way as time goes on; it de-
velops to benefit both sides, and then - in many cases - extends as an interchange of information to other areas, such as geriatric care.

Data marshalling

This concept, first introduced by the writer in 1960^{3} mainly in connexion with the testing of complex aerospace vehicles
and aircraft generally, may be described as the separation, streaming and systematic the separation, streaming and Figure 1 shows the control room installation as originally envisaged for aircraft testing. The main display consisted of a wall diagram of the complete aircraft, with tional basis and broken down to the next order of detail displayed on corresponding panels placed on the operator's console itself.
Fig. 3. Balanced-oscillator transducer $\begin{aligned} & \text { s.s.tem showing 'designed-in' intrinsic } \\ & \text { safety features. }\end{aligned}$
differentially arranged
leg. minerall \qquad

ERENT LOW IMPEDANCE OF SENSING COILS
INHERENT LOW IMPEDANEE
ANO CONNECTTNG CABLE

Fig. 2. Transducer instrumentation chain in
a totally hostile environment.
The design of the system was aimed at ensuring that faults at once strike
attention of the operator, and their location and magnitude are clearly apparent to him". Also as a statement of an ideal which is still aimed at ". . . the action to be taken (in the event of a fauit) arises naturally is
his mind without the need for the analysis correlation and interpretation of a mass of data".
Even at that time it was suggested that all the displays, and particularly the wall diagram, might be by large-screen (cinema
size) television. It is not generally known that large-screen television was in operation in certain London cinemas before
World War II, and in a more advanced form, using high-voltage projection tubes, was demonstrated to the Press in 1948 . In non-aerospace, such as process-plant, applications, the wall diagram becomes an 'alarm and situation' mimic-type diagram,
designed to give an overall instantaneous designed to give an overall instantaneoun
picture of the system at any time, and particularly under alarm conditions. Thus, for example, with a large offshore oilfield, the A . and S . diagram would show a group of well-heads with their main pipeline rum and a pictorial representation of (say) the
block of plant at the central platform Working within a conventional computer based (central processor) type of contro
system with visual display unit presentation, alarms shown at critical points on the A. and S. diagram give a combined 'alert engineer should a fault develop.
The resultant system is in sharp contrast with the 'spread-panel' type as shown in the heading illustration, and as described for Three Mile Island. Thus, even if the their information during that incident, the presentation of this information was such as to make their task of investigating the fault quite impossible. With this in mind, it would seem pertinent to add that they
would appear to have remained in operational Condition A throughout, something which should not be overlooked.

'Telling the truth

As has been stressed already, the most disturbing influence that a control engi-
neer can experience during a dangerous break-down is the realization that instruments are not 'telling the truth'. It is manifestly impossible to ensure that information will never be false (equivalent to infinite reliability), as, for example, when
a position transducer is mounted on the 'drive' side of a break in an actuator shaft. Nevertheless, design for full 'crisis management' demands that every effort must be made to give the maximum integrity to every element in the control system. The determining their ultimate form must be carried out jointly between user and
control-system designer ${ }^{2}$ if the maximum
protection is to be given to the whol tallatio is obviously a big subject; as on illustratio of the principles involved, consider o transducers as key elements in the overal complex. They occupy the most exposed position in the instrumentation chain since they are vulnerable both to sever mechanical and electrical disturbance Apart from various forms of mechanical engineering techniques, reducing vulnera bility is fundamentally a matter of the design and construction of the transducer itself and (in the mechanical context) of its physical environment. Instrumentation
transducer design is far more involved than is generally thought: this is particu larly true at the 'hyper-interface' where the parameter/electrical signal transfer take place; and it is at this interface that the actual meas take place. may be said to take place.
Consequently, it is vital that, under all tain the integrity of this transfer (i.e. that the transducer itself should 'tell the truth'). The system diagram of Fig. 2 tile physical conditions can be 'designedin' to the instrumentation chain system; and brings out the extra vulnerability of the transducer in meeting the 'real' hostile conditions such as blast pressures at the hyper-interface. The balanced-oscillato
(dual-chain) transducer system of has been designed from the beginning to exhibit minimum error under abnormal and 'catastrophic' conditions.

This family of transducers have parameter-dependent' frequency outpu
derived as a difference (beat) frequency between two matched oscillators, themselves tuned by high (electrical) resistanc moving probes. These probes move dif erentially within their sensing coils at th input to the dual-chain system, which basic symmetry of the mechanical-electrical combination and its inherent balance provide a high degree of compensation fo The greatest
The greatest attraction of this configu tion, however, arises with extreme envi ronments, where the series-resonanc operation of the Clapp oscillators which are used, makes it possible to instal the sensing coil and probe remotely from the
less 'hard' electronic unit. This is by virtue of the low-impedance (coaxial cable) connexion, which can be used between the two with the series-resonant oscillators. From the diagram it will be seen how this
isolation as part of the intrinsic precautions built-in to the system, is an advantage. Thus, with the 'barrier' protec tion shown, the coil can be situated in the hazardous area and can be made effectively neutral, with little risk of energy at this point to initiating a spark.

References

1. Cottrell, A.H.: How Safe is Nuclear Energy?.
Heinmann Educational Books, London 1981. 2. Young, R.E.: Control in Hazardous ${ }_{1982}$ Environments. Peter Peregrinus, Stevenage
2. Young, R.E.: Data marshalling. Private To be concluded

Action on private mobile radio - urgent!

Unless the Government takes action quickly to
introduce repeaters, trunking and cellular ystems, along with other measures mercial enterprises, emergency services and
public bodies will become much less efficient public bodies will become much less efficient
than their foreign counterparts and the UK radio industry will suffer.
This is the burden of a report, prepared by
PACTEL (PA Computers and TelecommuniPACCEL (PA Computers and Telecommunications) on behalf of the Electronic Engineering Association, which is entitled 'Mobile radio -
the case for urgent action" ${ }^{\text {It }}$ is the latest in a series of attempts to persuade the Govermment,
who control the use of the spectrum, to allow who control the use of the spectrum, to allow
mobile radio users access to a share of the
30 MH -1 1 GHz spectrum 30 MHZ IGHz spectrum more in keeping with
potential usage than the nominal 8% they now potential usage than the nominal 8% they now
have (PACTEL say this is really 6.5% because of interference, terrain limitations and official restrictions).
Among the consequences of the failure to
secure a more equitable share are haigh costs secure a more equitable share are high costs,
delays, pollution and a poor service to customers of the haulage industry, and a lower level of afety and security.
The depressed use of m.r. in the U.K.
(around 0.5% against 2.7% in the US) is, says
PACTEL, no help at all to the UK radio indusry, in contrast to the statate of affairs in Japan and the USA, where a healthy home demand nds as a spur to development and production
According to fficient systems and lower costs.
And

WIRELESS WORLD JUNE 1982
taken now. Another $30-35 \mathrm{MHz}$ of spectrum
must be released for m.r. use - little enough,
since this would bring the tota since this would bring the total to a mere 10% of
the usable $30 \mathrm{MHz-lGHz}$ band. Secondy, the the usable $30 \mathrm{MHz}-1 \mathrm{GHz}$ band. Secondly, the
Government should take a close look at the
amount of spectrum inhabited by the militry amount of spectrum inhabited by the military
and by broadcasters. PACTEL says "there is and by broadcasters. PACTEL says "there is
litte doubt" that the MoD keeps some of its allocations on ice, unused in peaceetime, simply
aitle dome
eecause they might te need because they might be needed socme day, in spite of claims by m.r. lobbyists that, dif they were
released, they could be taken back in emergency released, they could be taken back in emergency
in a matter of hours or even minutes. In the case of broadcasting, the repert is criticical of the case effi-
ciency with which the spectrum is used and says ciency with which the spectrum is used and says
that it could be improved upon without any deterioration in service. Thirdly, three types of system should, says
PACTEL, be promoted to give wide-ranging, PACTEL, be promoted to give wide-ranging,
low-cost, flexible and spectrum-efficient services: community repeaters, trunked systems
and cellular systems. and cellular systems.
In a repeater, a common base station, rage, many rented mobiles sharing one channel: a 'channel buss' indicator helps to avoid
user hearing messages not meant for him. User hearing messages not meant for him. channels are available for this type of
Trunked systems provide a number of
channels to each user and are therefore freTrunked systems provide a number of
channels to each user and are cherefore fre-
quency-efficient: the operator uses a multi-
channel radio which is tuned automatically to a free channel. For this purpose, blocks of channels are needed - too few are currently
available for widespread adoption of this available for widespread adoption of this
kind of system. More channels are needed. The sthird type, the cellularar system, relies
kind on dividing the area into cells, each of which is treated as a trunked system. By geograph-
ically separating cells which use the same
lock of frequencies iner clally separating cells which use the same
and the usagene of of the int chanterenence is is avoided and the usage of these channerel isce increaseded by
up to 1200%. Blocks of channels are needed up to 1200%. Blocks of channels are needed
for trunking. Once again, not enough are arailable 56 instead of a a required enough. The fourth recommendation is that the Gov-
rrment actively promote the use of private ernment actively promote the use of private
mobile radio instead of restricting it. Finally, says the report, the delay of between
three and six months in the issye of three and six months in the issuau of berween
should be reduced. Otherwise, illegal installations will multiply and make spectrum managetionst virtually mpityossible. As John Carlson, chairman of the EEA's Mo-
bile Radio Committe, bile Radio Committee, points out, "ifif even the manufacturers of private mobile radio equip-
ment put forward the difficulties to their cus-
omers, the situation must be bed" And Nomers, the situation must be bad". And Ray p.m.r. scene by saying sums "Other countries have
taken a p.m.r. scene by saying "Other countries have
taken a conscious decision to encourage p.m.r.
the UK hasn't.". *Available at t 3.00 from The Director, The Electronic Engineering Association, Leicester
House, 8 Leicester Srreet, Londdon WC2H House, 8 Leicester Street, London WC2H 7BL.

80-100 WATT MOSFET AUDIO AMPLIFIER

A three-part article on the design and construction of a modern, high-power amplifier
begins with a description of the problems of amplifier design in relation to the characteristics of 'vertical' power mosfets. A matching, modular preamplifier design will follow.

The problem with designing audi amplifiers is that there are a number of to satisfy completely: such things as reedom from harmonic and atermodulation distortion; independence, in terms of distortion or transient
response, on the nature of the load response, on the freedom from spurious amplifier-generated) signals over the whole range of signal inputs and likely load characteristics; rapid settling time and freedom from 'hang-up' on step-input or onditions; and complete absence of inputsignal or load-induced instability.
Not only are these requirements mpossible to achieve absolutely, but the vork needed to improve one of these maltaneously bring about a worsening in other respects, so part of the task of the esigner is to choose, within the appropriate limits of cost and complexity, between conflicting possibilities and
equirements. No two designers (or their ommercial or advertising managers) are ikely to come to the same balance of compromises in these respects, and this
leads to subtle differences in the tonal leads to subtle differences
characteristics of the designs.
characteristics of the designs. he last twenty years, which I view with regret, is an overwhelming concentration on the attainment of very low harmonicdistortion figures over the whole of the audible spectrum, to the extent that many state t.h.d. figures fifty or more times better than possible, under any conditions, from the signal sources which feed the amplifiers. A similar amount of effort is high signal-to-noise ratios - which would be valuable if it were matched in the handling of programme material by the programme producers.
The reason for this commercial interest is a simple one. the major emphasis in
most equipment reviews is placed on t.h.d. and s / n ratio, coupled with, in the case of power amplifiers, power output in watts/pound (sterling) or, occasionally, watts/pound (avoirdupois). This trend be achieved without impairment in other desirable characteristics of the equipment: unfortunately, it cannot. If one wants some quality very good, one must accept some others relatively bad! If only one
knew which ones were important to the listener, this choice would be easy, but one

by John L. Linsley Hood

oesn't. Quite a lot of work has been done in the field of psycho-acoustics to try to characterize the effects on the listener of far from complete and impaired, from the point of view of the designer, by the mission of most of the minor performance defects practical amplifier designs are heir
Nevertheless, a predictable result of the accumulation of experimental findings on acoustic effects, coupled with a greater awareness on the part of designers of the existence of residual performance interest in new. developments in components and circuit techniques, as a possible route to improved performance. Of these new component developments, active devices, has been the growing active devices, has been the growing reasonably priced power mosfets (metal-oxide-silicon field-effect transistors). These devices have a very much better h.f. response - almost embarrassingly so -
than the normal audio power transistor, and allow a considerable extra freedom in solving h.f. loop-stability problems, where some compromise must always be reached in a feedback amplifier design between the margins and the need to retain a high loop gain at the upper end of the audio spectrum to achieve a high degree of steady-state linearity. In addition, these devices are almost completely free of the transistors, which tend to impair complexsignals transfer.
Unfortunately, power mosfets have electrical characteristics and circuit requirements which are very different
from those of the junction power transistor, so that they cannot be used as a direct replacement for junction transistors in existing designs. One must reappraise the circuitry.

Power mosfet

Insulated-gate field-effect transistors, of the type shown in outline in Fig. 1(a), and of charge induced in an otherwise nonconducting region of a semiconductor, have been known and used in small-signal applications for many years - particularly
in v.h.f. circuitry, where their very fast
esponse times are of great value. However, the conducting path in these devices is, by the nature of their method of construction, parallel to the surface of the although some semiconductor manufacturers have achieved this in an endeavour to avoid restricting patents, to make this conducting path sufficiently hort to achieve a or larger signal use.
The technical breakthrough in this type of device came about when it was appreciated that a ' t ' or ' 'o' groove etched
through the junctions in a fairly conventional transistor gave the possibility of an insulated-gate induced-charge fe.t., in which the current flow would be 'vertical. (as in the conventional junction transistor) rather than 'lateral. (in relation to the surface of the chip) as in the normal insulated-gate component. This gave a

(b)

Fig. 1. Small-signal, n-channel, insulatedgate f.e.t. of 'Iateral' construction is show
at (a), while at (b) is the vertical pow at (a), while at (b) is the vertical power
mosfet, in which the conducting path is a mreat deal shorter.

Fig. 2. D.c. operating conditions of typical power mosfot compared w
junction power transistor.
these devices are now almost universally known, which was open to any manufacturer of epitaxial planar junction ransistors with the necessary skills in mask manufacture to fabricate the large number of parallel-connected igfet gates on a single chip, which are needed to lowe effective mutual conductance (typical construction for such a vertical or power - mosfet is shown in Fig. 1(b), hough the proliferation of such design within the past few years makes the progressively less tenable. However, they do all have in common the paralle connexion of a large number of elements, which makes the mask design more eject rate and cost relatively high in comparison with the larger power junction transistors.
The electrical performance, under d.c. conditions, of a power mosfet, is shown in unction power transistor added to the graph to draw attention to the differences n performance. Two features are mmediately obvious from this graph hat a significandy higher forward voltage applied to the gate of the mosfet is adequately linear, operating current, and that the mutal conductance of the powe mosfet (about 2A/V in its linear region) is very much lower than that of the bipolar junction transistor (which can be in excess
of $15 \mathrm{~A} / \mathrm{V}$, or many hundreds of amps/volt in the case of Darlington-connected pairs).
In conventional audio-amplifier design as it has become established over the pas 20 years, the 'architecture' normally voltage amplifier, usually operated in clas A, with as high an a.c. gain as is practicable without the use of a nconvenient number of gain stages ollowed by an impedance-converter stag mitter followers, forward biassed into AB operation, with an operating point chose oo that the mutual conductance of the pair of emitter followers is close to that which perating in its 'inear region. Negative operating in its inear region. Negative input to improve the overall linearity and ther operating characteristics of the mplifier.
WIRELESS WORLD JUNE 1982

This configuration gives satisfactory power outputs with low quiescent thermal dissipation. The main drawback in this system is that there are invariably some low-level residues of crossover distortion, which increase in magnitude at higher
frequencies, as the open-loop gain of the frequencies, as the open-loop gain of the
class A amplifier decreases - mainly as a result of the added h.f. loop-stabilizing components. This problem is worsened by the loss in loop gain through the output emitter-folowing stage,
To a first approximation, the output mpedance of an emitter follower is $1 / g_{\mathrm{m}}$, which would give a gain in the output stage of $\mathrm{Z}_{\mathrm{L}} /\left(1 / g_{\mathrm{m}}+\bar{Z}_{\mathrm{L}}\right)$ at low frequencies. However, there is a further loss of gain at urn-on and turn-off times of the ransistors, so it is customary to use two or more transistors in a compound configuration in each half of the emitter impedance, and partly to allow the 100% negative feedback within the emitterfollower group to force improvements in he internal h.f. characteristics.
Inevitably, therefore, a complementary
pair of output source followers usig pair of output source followers using
power mosfets, having a maximum g_{m} of some 2 AV , will perform less well in terms

of linearity with a comparable class A amplifier stage than a pair of compound
emitter followers with an effective (overall) g_{m} of, at least, some $100 \mathrm{~A} / \mathrm{V}$. Two solutions are available to this problem, of which the first is simply to incorporate the power mosfets in a
compound source-follower circuit, with compound source-follower circuit, with
one or two small-signal bin to increase the internal loop gain and reduce the dynamic output resistance and non-linearity of this stage. This provides a very simple answer to the difficulties
introduced by the low g_{m} of the power introduced by the low g_{m} of the power
mosfet, while allowing full advantage to be taken of the advantages of these devices (freedom from 'secondary breakdown', simpler output stage overload protection, and much better h.f. characteristics transient response). I have shown a practical audio amplifier circuit using mosfets in the output stage configuration of Fig. 3(a), in another place
For relatively low-power use, up to say 50 watts, this type of output stage is
entirely satisfactory, and gives a good performance without calling for unconventional circuit design. However, there is a practical limitation in higher in each compound half cannot be less than the forward gate voltage (ref. Fig. 2) added

(c) Fig. 3. To increase the internal loop gain,
the mosfet can be used with a small-signal transistor in compound source-follower,
which enables low mutual-conductance mosfets to be used, while retaining their advantages, as in (a). At higher powers,
arger supply voltages must be used, but larger supply voltageses must be used, but
circuit at (b) shows that only low-curent circuit at (b) shows that only low-current
drivers need be so supplied. Circuit at (c) is
extension of approach shown in (b) extension of approach shown in (b).

ig. 6. Internal protective Zener diode can cause inadvertent thyristor action, in which gate Fig. 6. Intern
loses contro
the saturation voltage ($V_{c e}$) of the driver ransistor, even though the necessary rain-source voltage of the mosfet for this atput current may be less han tusp. Th-lin oltages, with a consequent increase in the cost of mains transformer and smoothing
capacitors.
In the very simple complementary
the losfet output stage of Fig. 3(b), the driv tages can be supplied from a highe
voltage line without so much of a cos penalty, since the supply currents require by the driver stages are comparativel mall.
This advantage can be retained by the of the circuit arrangement of Fig. 3(c), hile still allowing a very high effective g_{m} of the compound emitter follower, and a high level of internal negative feedback. The problem with this circuit is that it is internal feedback loop, and h.f. stabilizing components such as C_{s} and R_{s} need to be added to achieve the desired overall gain and phase margins - an elaboration which is unnecessary in the simpler arrangement The othe
he lower effeluion to the difficulty of imple mosfet source follower of Fig . $2_{\text {(b) }}$ is
siter to increase the gain of the class A amplifier stage, and this approach is explored below. piffalls in the use of power mosfets which need consideration if a workable and reliable design is to be put togethe
Specific problems with mosfets Although the power mosfet is, in its normal method of construction, equivalent to a bipolar junction transistor with its base and emitter joined together, and is 'secondary breakdown' (the funnelling of emitter current through diminishing areas of the base-emitter junction and consequent localized overheating and damage) it does suffer from other problems which are unique to itself. Of
these, the first and most immediate is that the gate insulation layer, an oxide film formed on the surface of the silica, is less than 0.0001 in (2.5 microns) thick, and will break down if the voltage between the gate
and the source exceeds some $10-20$ volts -
depending on the device manuacture. Since the time delay involved in this is likely to be very short, the circuit must be designed to protect the gate agains even very brief voltage excursions beyond this limit.
This difficulty can be lessened, in the incorporating a Zener diode between source and gate, as shown in Fig. 4. However, this technique in its turn leads to the problem that the device must then be protected against a reverse bias - of the this internal Zener to conduct, since this can sometimes lead to the triggering of a hyristor-type action within the mosfet, in which the gate is irrelevant. This may not destroy the device, but may damage form of protection is the use of an external germanium diode, connected in parallel with the gate/source Zener, and arranged to conduct before the internal diode. This is not a preferred solution, however, since diode is much poorer than the unmodified input resistance of the mosfet, and is nonlinear with voltage. The circuit of Fig. 3(a) is immune from this problem.
The second difficulty in the use power mosfets arises from the very high operating frequencies possible with these circuit element of the form shown in Fig.

Some literature that you would like to receive
may be out of print. A service to help you find may be out of print. A service to help you find
that elusive book is provided by The Out of that elusive book is provided by The Out of
Print Book Service, 17 Fairwater Grove East, Print Book Service, 17 Fairwater Grove East,
Cardiff, CF5s 2JS. They do not charge fee but
ask that all requests for the service should be ask that all requests for the service should be
accompanied with a postage stamp at the current first class letter rate and full details of the
book required.
WW 01

Ceramic chip capacitors for high frequency applications are described in a bulletin from Hy-Comp Lid, Shield Road, Ashford Industrial Estate, Midalesex TW15 1AV. The bullecin
lists their stability, specifications and termina-
tions. 5(a), when the user expects the device to
behave as in Fig. 5(b)! This causes immediate high-frequency oscillation, with frequently destructive effects, when such mosfets are incorporated and since the resultant burst of oscillation probably occurs in the $200-1000 \mathrm{MHz}$ range - and is brief anyway - it is nlikely that it wif be sen on any experimenter is then left contemplating a defunct device, thinking that its sensitivity o static electrification is so great as to render it unusable.
Happily, the internal gate-source capacitance is sufficiently high, typically in
the range $600-1500 \mathrm{pF}$, that stray static charge is unlikely to induce an electrical breakdown of the gate insulation. This internal capacitance, which must not be overlooked in circuit design means for taming the h.f. behaviour of the transistor, sicne an external 'gate-stopper' resistor can then cause a predictable rolloff in h.f. response, to bring the unity gain ransition frequency down to a more the range 470R-4k7 is normally adequate. Given these precautions, my experience is that power mosfets are at least as durable as normal bipolar power transistors, and performance for a relatively small extra perform
cost.

References 1. Linsley Hood,

1. Linsley Hood., J. L., Hi-Fi News and Record
Review, Vol. 25, No. 12 (Dec. 1980) pp. 83-85.

To be continued

MTERATURR ReC태릴

Power semiconductors and d.c. power supplies are detailed in the 1982 edition of the Lambda catalogue. It includes some application
notes and dimensional drwwins which makes it notes and dimensional drawings which makes it
useful as a handbook. Lambda Electronics Co, useful as a handbook. Lambda Electronics
Abbey Barn Road, High Wycombe, Bucks.

Fig. 5. At high frequencies, stray
capacitances and inductances, sh capacitances and inductances, shown at
(a), turn mosfet into an oscillator, with
damaging effect.

DIGITAL FILTER DESIGN

Will digital filters take over from their analogue counterparts? Accuracy, versatility and falling cost suggest they will. This second article on microprocessor implementation details a procedure for recursive filter design of Butterworth and Tchebychev response, with examples and Basic programs for pole, zero calculation.

It has long been recognized that because of the high sensitivity of the roots of highorder polynomials to coefficient values, recursive digital filters are best imple mented as cascade or parallel arrangement of second-order filter sections. Cascading trated in Fig. 1 (a) is equivalent to re-expressing $H(z)$ as the product of secondorder transfer functions, i.e.
$H(z)=H_{1}(z) . H_{2}(z) \ldots H_{\mathrm{m}}(z)$
where each $H_{j}(z)$ is of the form

$$
\begin{equation*}
H_{\mathrm{i}}(z)=\frac{1+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}} \tag{1}
\end{equation*}
$$

This is often referred to as a biquadratic ransfer function and the circuit by whic it is implemented a biquadratic section The signal flow diagram of a commonly
used biquadratic section is shown in Fig
The filter design problem is now that of deciding how many biquadratic section are required, and calculating the coefficients for each of them. There are a variet of solutions to this problem, and the proce dures are divided ito two broad groups direct methods in which the poles and directly in the z-plane, and indirec methods which involve the design of a analogue prototype filter which is trans rmed to give a suitable digital equiva ect design methods can be found in th

WIRELESS WORLD JUNE 1982

by B. M. G. Cheetham and P. M. Hughes

tandard texts ${ }^{1}$. The direct method de ailed here for the design method de and Tchebychev-type digital filters is probably the simplest approach; it is non terative and does not require the use of a proge computer. Further detaists and direct design methods are to be found in the standard texts.'

Butterworth and

Thebychev filters
Most filtering applications require an am plitude response that allows selected fre
quency bands to pass through the filte unaltered and eliminates as nearly as pos sible frequency components outside thes bands. In many applications, particularly where a degree of phase distortion is acceptable in the passbands, Butterworth
and Tchebychev-type filters are often used, whose responses approximate th magnitude-frequency response of an idea filter. The difference between the two classes lies in the nature of the approximation. In the case of Butterworth-type filt-
ers, the magnitude of the frequency res ponse is maximally flat over the passband falling by 3 dB at the cut-off frequencies and decreasing monotonically in the stopbands. The rate of fall-off of gain in
the stopbands is fixed and determined the stopbands is fixed and determined
solely by the order of the filter. Tcheby-chev-type filters display an equi-ripple passband response with specificable rippl amplitude δ. The filter gain falls monotonically in the stopband at a rate dependin on the passband ripple amplitude: the the transition from passband to stopband. Tchebychev-type filters generally show an increased rate of fall-off of gain over th equivalent Butterworth-type filter of th same order. Unlike analogue filters,
number of alternative methods exist fo the design of Butterworth and Tchebyche digital filters. For a given set of design parameters, there will be a number of digi tal filter transfer functions which may be claspe. The method presented here, referred to as the squared magnitude approach, is described in detail by Rader and Gold ${ }^{2}$ and used by Ackroyd ${ }^{3}$. The poles and zeros of the digital filter are deducted
directly from the squared magnitude of the required response with no constraints placed on the phase response, which may
therefore be non-linear. Once the pole and
ero positions have been determined it is simple matter to calculate the a_{i} and b_{j} econd-order sections. As the design procedure simply consists of the evaluation of a number of given formulae, it is partilator or microcomputer. The first design procedure given is that for a lowpass digital filter, which also forms the basis of the design methods for highpass, bandpass nd bandstop filters.

Lowpass Butterworth filter

An analogue lowpass filter is an n th-order Butterworth type if its response $G(j \Omega)$ satisfies

$$
|G(\Omega \Omega)|^{2}=\frac{1}{1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 n}}
$$

here Ω signifies angular frequency. This ormula gives a passband which maximally flat, with a gain of 0 dB at d . alling to -3 dB at the cut-off frequen

Fig. 1. Recursive digital filter is realised as cascade of second-order sections with
transfer functions $H_{1}(z), H_{2}(z)$, etc. $X(z)$ and $Y(z)$ are the z-transformed input and outpu sequences respoctively (a). Biquadratic
section (b) has input sequence $\{x$ and section (b) has input sequence $\left\{x_{n}\right\}$ and
output $\left\{y_{n}\right\}$ with $w_{n}=x_{n}-b_{1} w_{n-1}-b_{2} w_{n-2}$ so $\left(1+b_{1} z^{-1}+b_{1} z^{-2}\right) W(z)=X(z)$. Also $y_{n}=w_{n}+a_{1} w_{n-1} a_{2} w_{n-2}$ so $Y(z)=\left(1+a_{1} z^{-1}+a_{2} z^{-2}\right) W(z)$ $=\cdot \int_{1+b_{1} z^{-1}+b_{2} z^{-2}}^{\left(+a_{1} z^{-1}+a_{2} z^{-2}\right.} \mid X(z)$, as required
 Fig. 2. Amplitude response of three
Butterworth-type lowpass digital filte with cut-off equeil to 0.125 effect of increasing the filter order.
$\Omega_{\text {c. }}$. A corresponding forumla for digital filters which produces a frequency response with similar properties to that of an
analogue Butterworth filter is

$$
\left|H\left(\mathrm{e}^{j \omega}\right)\right|^{2}=\frac{1}{1+\left(\frac{\tan \omega / 2}{\tan \omega_{\mathrm{c}} / 2}\right)^{2 n}}
$$

(2)
where ω_{c} is equal to the radian cut-off frequency. In place of radian frequency ω it is often convenient to refer to relative frequency f, obtained by dividing ω by 2π. Hence f is the relative frequency of a sinu-
soid of frequency $F=f \times(1 / T)$. Because F must be less than $1 / 2 T$ to satisfy the sampling theorem, values of f need only be considered in the range 0 to 0.5 . Fig. 2 shows the magnitude responses of three These filters all have a cut-off frequency $f_{c}=\omega_{c} / 2 \pi$ equal to one-eighth of the sampling frequency. As the order of the filter, n, is increased the more closely its magniude response approximates the ideal pass
The design of a Butterworth lowpass suitable function $H(z)$ for which the substitution $z==^{j \omega}$ gives equation 2. A number of such functions of z may be found, their derivation being a fairly comable transfer function derived by Rader and Gold ${ }^{2}$ is found to have poles located at $U_{\mathrm{m}}+\mathrm{j} V_{\mathrm{m}}$ in the complex z-plane, where
$U_{\mathrm{m}}=\left(1-\tan ^{2} \pi f_{\mathrm{c}}\right) / D_{\mathrm{m}}$
$V_{\mathrm{m}}=\left(2 \tan \pi f_{\mathrm{c}} \sin \theta_{\mathrm{m}}\right) / D_{\mathrm{m}}$
with $D_{\mathrm{m}}=1-2 \tan \pi f_{\mathrm{c}} \cos \theta_{\mathrm{m}}+\tan ^{2} \pi f_{\mathrm{c}}$
and $\theta_{\mathrm{m}}=\frac{(2 m+n+1) \pi}{2 n}$
where $m=01, \ldots(n-1)$ for a filter of even- may also be specified Butterworth filttransfer function zeros is located at $z=-1$. Once the poles and zeros of a recursive stop in the design process is to determine the coefficients a_{1}, a_{2}, b_{1} and b_{2} of equa-
ion 1 for each cascaded second-order section. For even-order filters, the transfer
function poles can always be grouped as complex conjugate pairs
Hence the overall filter transfer function $H(z)$ expressed as a product of $n / 2$ secon
order (biquadratic) transfer functions is

$$
H(z)=A_{0} \int_{m=0}^{n / 2-1} \times
$$

$\left(1+z^{-1}\right)\left(1+z^{-1}\right)$
$\left[1+z^{-1}\left(U_{\mathrm{m}}+j V_{\mathrm{m}}\right)\right]\left[1+z^{-1}\left(U_{\mathrm{m}}-j V_{\mathrm{m}}\right)\right]$
Expanding the above equation yields the equired form

$$
\begin{gather*}
H(z)=A_{0} \prod_{m=0}^{n / 2-1} \times \\
\frac{1+2 z^{-1}+z^{-2}}{1-2 U_{\mathrm{m}} z^{-1}+\left(U_{\mathrm{m}}^{2}+V_{\mathrm{m}}^{2}\right) z^{-2}} \tag{4}\\
\frac{1}{A_{0}}=\left.H(z)\right|_{z=1}=\left.H\left(\mathrm{e}^{j \omega}\right)\right|_{\omega=0} . \tag{5}
\end{gather*}
$$

Tchebychev filters
The squared magnitude of the frequency filter with cut-off ω_{c} is
amplitude. Fig. 3 shows the frequency response of a typical fourth-order Tchebychev filter. The magnitude of the pass
band ripple δ is related to the parameter ϵ by

$$
\begin{equation*}
\epsilon=\left(\frac{1}{(1-\delta)^{2}}-1\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Increasing δ has the effect of sharpening the cut-off region of the filter and increases the stop band attenuation, but only at the
expense of increasing the pass band ripple. expense of increasing the pass band ripple.
The transfer function poles of an n thorder digital filter whose frequency res${ }^{\text {ponse satisfies equation } 6 \text { are located at }}$ $U_{\mathrm{m}}+j V_{\mathrm{m}}$ in the complex z-plane where

$$
\begin{aligned}
U_{\mathrm{m}}= & \left\{2\left(1-a \tan \pi f_{\mathrm{c}} \cos \theta_{\mathrm{m}}\right) / D_{\mathrm{m}}\right\}-1 \\
& V_{\mathrm{m}}=\left(2 b \tan \pi f_{\mathrm{c}} \sin \theta_{\mathrm{m}}\right) / D_{\mathrm{m}}
\end{aligned}
$$

with $D_{\mathrm{m}}=\left(1-a \tan \pi f_{c} \cos \theta_{\mathrm{m}}\right)^{2}$
$+b^{2} \tan ^{2} \pi f_{\mathrm{c}} \sin ^{2} \theta_{\mathrm{m}}$

$$
\text { for } m=0,1,2, \ldots n-1
$$

$$
\text { and } 2 a=\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{1 / n}
$$

$$
-\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{-1 / n}
$$

$$
2 \dot{b}=\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{1 / n}
$$

$$
+\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{-1 / n}
$$

$$
\left|H\left(e^{j \omega}\right)\right|^{2}=\frac{1}{1+\epsilon^{2} V_{\mathrm{n}}^{2}\left(\frac{\tan \frac{\omega}{2}}{\tan \frac{\omega_{c}}{2}}\right)}
$$

θ_{m} is calculated as for Butterworth filters θ_{m} from equation 3 and each of the n transfer function zeros is again located at $z=-1$. Once the poles and zeros of the transfer function have been calculated, substituting
for U_{m} and V_{m} in equation 4 gives the $n / 2$ biquadratic transfer functions used in the realization of the filter.
where $V_{\mathrm{n}}(x)$ denotes the n th-order Tchebychev polynomial function of x and ϵ is a

Fig. 3. Amplitude response of a typical with cur-off equal to 0.25 and speecified ripple, δ.

Fig. 4. Amplitude and phase ype highpass digital filter designed usin ype highpass digital filter dosigned
owpass to highpass transformation.

Example 2

Design a second-order Tchebychev lowpass digital filter with $f_{c}=1 /$
band ripple of $0.1(0.915 \mathrm{~dB})$ By equation $7, \epsilon=0.4843$ and a and b
and thus calculated to be $b 44$. and thus calculated to be 0.844 and 1.2834
respectively. Substituting these values into respectively. Substituing these values into
equations 8 with θ_{m} obatined from equa-
tion 3 for $m=0$ and 1 shows that the poles
$z=-0.38075 \pm i 0.49030$. Calculating now the biquadratic transfer
function for the single section required gives
$H(z)=A_{0} \frac{1-2 z^{-1}+z^{-2}}{1+0.7615 z^{-1}+0.3854 z^{-2}}$
Substituting $z=1$ into the above shows that Substituting $z=1$ into the above shows that
A_{0} must be set to 0.5367 for unity gain at Design a fourthorder bandpass But-
erworth type filter with a sampling fre Derworth type filter with a sampling fre-
quency of 16 kHz and cut-off frequencies
of 2 and 4 kHz . of 2 and 4 kHz . As the bandpass transformation doubles
the order of the prototype filter, a second he order of the prototype fitter, a second-
order Butterwort lowpass prototype is
required with a relative cut-off frequency required with a relative cut-off frequency
$f_{c}=(4-2) / 16=0.125$. The two poles of the
protorype filter, calculated from the ex-$f_{\mathrm{c}}=(4-2) / 16=0.125$. The two poles of the
prototyp filter, calculated from the ex-
pressions for U_{m} and V_{m} (eqns 3), lie at pressions for U_{m} and V_{m} (eqns 3), lie at
$z=0.4714 \pm 0.3333$. The two zeros are a $z=-1$. Substiruting for $f_{h}=4 / 16$ and
$f=2 / 16$ in equation 9 gives $\alpha=0.4142$. By equation 10 the poles of the bandpass filter ted to be
$z=0.526$ $z=0.5262 \pm j 0.5885$
$z=0.0833 \pm j 0.7266$.
The zeros of the prototype filter transform
to two zeros at $z=-1$ and two at $z=+1$ Pairing the zeros at $z=-1$ with the poles
at $z=0.0883 \pm 00.7266$, gives $H(z)$

$$
=\left(\frac{1-2 z^{-1}+z^{-2}}{1-1.0524 z^{-1}+0.6232 z^{-2}}\right)
$$

$\left(\frac{1+2 z^{-1}+z^{-2}}{1-0.1665 z^{-1}+0.5348 z^{-2}}\right)$

The passband gain is set to 0 dB by scaling $\boldsymbol{H}(z)$ by a factor of 0.0976 . Graph shows he magnitude and phase responses of the

 designed filter
frequency
Amplitude and phase response of fourth-order Butterworth-type bandpass
filter designed in Example

Highpass, bandpass and bandstop filter design
 bandstop filter design

The design of Butterworth and Tchebychev filters may be carried out by transforers obtained by the methods described earlier 4 . The simplest of the transformations is that of low to highpass. A lowpass filter with relative cut-off frequency f_{c}, is transformed to a high-pass filter with
relative cut-off frequency $0.5-f_{c}$ by replacing z^{-1} with $-z^{-1}$ in the filter transfer function $H(z)$.
Applying this transformation to the lowpass Tchebychev filter in the previous example, we obtain a high-pass Tchebyof $1 / 6$. The resulting transfer function $H(z)$ of $1 / 6$.

$$
0.5367\left(\frac{1-2 z^{-1}+z^{-2}}{1+0.7615 z^{-1}+0.3854 z^{-2}}\right)
$$

The magnitude and phase responses of this Iter are shown in Fig.
ow to band pass
low pass prototype filter with relative cut-off frequency f_{c} is transformed to a off frequencies of f_{1} and $f_{1}+f_{f}\left(=f_{b}\right)$ respec tively, by the replacement of z by

$\frac{z(z-\alpha)}{(\alpha z-1)}$

in the prototype transfer function, where

$$
\begin{equation*}
\alpha=\frac{\cos \pi\left(f_{\mathrm{h}}+f_{1}\right)}{\cos \pi\left(f_{\mathrm{h}}-f_{1}\right)} . \tag{9}
\end{equation*}
$$

This has the effect of doubling the order of he prototype filter, and consequently each second-order section in the lowpass filter is function in the bandpass filter. It is necessary therefore to reduce each of these ourth-order transfer functions to the pro duct of two-second order sections. The ransformation may be conveniently ap ype each of which produces two poles in the resulting bandpass filter. For each pole of the prototype filter situated at $z=p$, say, the transformed filter will have poles at
values of z which satisfy alues of z which satisfy

$$
\begin{gathered}
p=\frac{z(z-\alpha)}{(\alpha z-1)} \\
\text { i.e. at } z=1 / 2 \alpha(1+p) \pm\left\{\frac{1}{4} \alpha^{2}(1+p)^{2}-p\right\}^{1 / 2}
\end{gathered}
$$

As p in this equation will normally be a complex number, computation of the poles of the bandpass filter involves the calcudix. The $2 n$ poles of the band-pass filte may then be determined by substituting ach of the n prototype poles into equatio The band-pass poles may then rouped into complex conjugate pairs to iquadratic transfer functions which com prise the overall filter transfer function, $H(z)$. The zeros of the bandpass filter are calculated from the zeros of the prototype using the same formulae as were used for
the poles. By substituting $p=-1$ into equation 10 the n zeros of the lowpas prototype located at $z=-1$, transform to $2 n$ zeros in the bandpass filter, n located a

$z=1$, the other n at $z=-1$. When the order of the prototype filter is even, as is nor-
mally arranged, the zeros of the bandpass filter may be grouped in pairs such that of the n second-order sections which comprise the filter, half will have transfer func-

102
t the remaining half have numerators
whils
of

Example 4
Design a fourth-order bandstop Tcheby
chev
chev filter with a sampling frequency of 20 kHz , lower and upper cut-off fre
quencies of 1 and 1.2 kHz respectively and a passband ripple of 0.1
A second-order TChebychev lowpass
prototype is required with a relative cut-of prototype is required with a relative cut-o
frequency of 0.49 and a passband ripp frequency of 0.49 and a passband ripple
amplitude of 0.1 . The two poles of this
filter are found filter
$z=-0.9681 \pm j 0.0482$, with the lie at at
foros at $z=-1$. Using the transformation of
equation 11 the poles and zeros of the band-stop filter are

poles
0.9356

zeros
$0.9414 \pm j 0.3374$
$0.8414+0.3374$
The filter transfer function $H(z)$ is thu calculated to be

$$
\left(\frac{1-1.8827 z^{-1}+z^{-2}}{1-1.8712 z^{-1}+0.9714 z^{-2}}\right)
$$

$$
\left(\frac{1-1.8827 z^{-1}+z^{-2}}{1-1.8341 z^{-1}+0.9672 z^{-2}}\right)
$$

which must be scaled by 0.969 to set the
d.c. gain to unity. The magnitude and phase responses of this filter are shown ansia.
The n biquadratic transfer functions may now be completed by pairing each of the calculated numerators with a suitable de-
nominator. As a general rule, the denomi nators of the second-order sections should be parried with the numerators in such a
way that the poles of each section are those way that the poles of each section are those
nearest to the zeros it implements. The filter transfer function $H(z)$ is simply the product of the n calculated biquadratic transfer functions. The passband gain may

Amplitude and phase response of Tchebychev-type bandstop or notch filter
designed using lowpass to bandstop
transformation in transformation in Example 4.

ing factor A_{0} equal to the reciprocal of of the passband.

Lowpass to bandstop

transformation
A lowpass filter with relative cut-off fre quency f_{c} is transformed to a bandstop quencies of f and f respectively, where

$$
f_{\mathrm{c}}=0.5+f_{1}-f_{\mathrm{h}}
$$

by replacing z in the prototype transfer function with

$\frac{z(z-\alpha)}{1-\alpha z}$

where α is defined as for the bandpas transformation. Apply the transformatio to poles and zeros it is readily shown that a pole or zero of the prototype located a
$z=p$ transforms to two poles or zeros of the $z=p$ transforms to two poles or zeros of the
nostop fiter tocated at
$z=1 / 2(1-p) \alpha \pm\left\{\frac{1}{4}(1-p)^{2} \alpha^{2}+p\right\}^{1 / 2}(11)$
The procedure for calculating the second order sections of a bandstop filter is simila to that for a bandpass filter. In this case,
however, the zeros are no longer located at $z= \pm 1$ but form complex conjugate pair which must be expanded in the normal way to give the numerators of the second order sections. The numerators of all the

Continued on page 79

WIRELESS WORLD JUNE 198

LETTERS

WIRELESS?

I have just bought a copy of your magazine, for with some amusement I have the following com
Firstly, I suggest you rename the magazine Computer World (Wireless Computer?, Computer
Wireles??) - I bought the magazine because I want to buy a communications receiver work with computers and I find it amusing that your magazine is now full of computer project
rather than the radio proiects it used to be. rather than the radio projects Mr . . Reay's letter
Secondly, with respect to (April 1982) - I have heard of the RSGB's opposition to c.b., but not experienced it
directly -1 am a c.b. user, but find the RSGB has nothing to worry about. Most c.b. users would not join the RSGB (they can barely
operate a 'rig' much less pass the RAE) These operate a 'rig' much less pass the RAE). Those
who are interested in radio (myself included), who are interested in radio (myself included),
find c.b. very frustrating (2 watts e.r.p. and 200 users per channel - at least in London) and this
exposure to radio usually causes strong motivaexposure to radio usually causes strong motiva-
tion to take (and pass) the RAE, thus escaping tion to take (and pass) the RAE, thus escaping
from the school-children and 'wallys" (although I hear 2 metres is not much better); and thus the
serious user ends up as an amateur anyway. I serious user ends up as an amateur anyway. I
have heard that the RSGB has been swamped with enquiries since c.b. legalization! On "Microchips and Megadeath", - if all of
us who work irrelevant fields would refuse to work on weapons systems (as I have done), there would be no such systems. Finally, what has happened to the glossy
paper WW used to be printed on? and where can paper WWW used to be printed on? and where can
I buy a second-hand communications receiver? Hugh J. Davies
East Barnet
East Barn
Herts

DISC DRIVES

refer to Mr Watkinson's article on disc drives hit computer can only address 32 K memory locations. It is well known that 16 bits can address 64 K locations ($\left.2^{16}=65,536\right)$, a feature
common to most microprocessors. Could Mr common to most microprocessors. Could Mr
Watkinson please explain his apparently erroneous mathematics?
P.C. Maior
.C. Major

Winches Hants.

The author replies.
am grateful to Mr Major for giving me the
opportunity to explain a problem which has been encountered by many familiar with microprocessors when faced with more power-
ful hardware. I am sure, however, that Mr Major would agree that such treatment would be out of place in a series which is primarily The definition of a 16 bit machine which I ind most satisfactory is that it possesses a data path of 16 bits in the c.p. .u. Neggecting more
complex machines which employ block fetching in conjunction with a cache memory, a 16 bit machine will have 16 bit wide memory locations. This allows an entire parameter to be
fetched with one memory cycle. In such fetched with one memory cycle. In such
machines, the smallest entity of interest is still the 8 bit byte, of which there are two in each location. As one address bit is necessary to
specify whether the high byte or the low byte is WIRELESS WORLD JUNE 1982
of interest ${ }^{\text {only }}$ IS bits are left to specify the
location. 2 吕 locations equals 32 K as stated. location. 2 locations equals 32 K as stated. mined by circuitry quite distinct from the dat paths in both microprocessors and minicomputers. For example, the 8085 has an 8 bit data
path, but has the ability to gerate 16 bit path, but has the ability to generate 16 bit
addresses by the time consuming expedient of a two-byte program counter which has to be of desigoning for a different price performance of designing for a different price performance
target. Thus on the one hand we might have a minicomputer which obtains two bytes at a time from 32 K locations, and on the other hand a from 64 K locations. The number of available bytes is the same in each case, but all other about twice as fast.
For further reading on the subject I would
recommend the Intel 8085 Manual and the PDP recommend the Intel 8085 Manual and the PDP
1104 Processor Handbook.

BLUMLEIN BIOGRAPHY

 The September 1973 issue of Wireless Worldcarried a letter from Rex Baldock which contained the following paragraph:
"The full story of Alan Blumlein's contribution to technical history will appear in the forthcoming biography by Mr F. P. Thomson, written in
conjunction with Simon Blumlein, and anyone coniunction witi simol Blumlein, and anyone
with information likely to be of value should write to Mr Thomson at 39 Church Road, Watford WD1 3PY Herts, England."
On the 1st June 1977, a GLC plaque to Blum-
lein was unveiled and Mr F. P. Thomson gave a lein was unveiled and Mr F. P. Thomson gave a
speech in which he said he had been "persuaded speech in which he said he had been "persuaded
to write a biography" on Blumlein. I, for one, eported the prospect of a Blumlein biograophy
in print (e.g. Hi Fi News, Ausust, 1977) and in in print (e.g.g. Hi Fi News, August, 1977) and in
February 1982 wrote to Mr Thomson querying progress on his biography. In reply I I have reeived letters which tell me that I am "impertinent" and my own articles on Blumlein are
'inaccurate", but offer no information on a publication date of the mooted biography. I would be interested to hear from anyone who answered the call for biographical informa-
tion nearly ten years ago, and is now concerned.
My address is Garden Flat, 5 Denning Road, ton nearly ten years ago, and is now concerned.
My address is Garden Flat, 5 Denning Road,
London NWW London NW3 1ST. Barry Fox
Hampstead
Hampstead
London NW3

MICROCHIPS AND MEGADEATHS

Steve Coleman (April letters), has taken too
literally my plea for refusal to fight. This was literally my plea for refusal to fight. This was
intended to apply to opposition in its widest intended to apply to opposition in its widest
sense,
inth militarily and industrially, now and in the future.
Electronic engineers in the UK, the USA and
USSR are in ideal positions to frustrate the arms trace. Also well placed are their supporting teams, without whose help they cannot operate. This applies to those who type, drive lorries and serve in canteens. When the Americans say "tell
that to the Russians", I have little doubt that the Russians say "tell that to the Americans". The
decisions of Nuremberg tell us that obedience to
orders from higher authority is no defenc against charges of immoral acts.
ling, and give us no iustification fors an allipa with either power. Balance the massacre of Ka tyn against that of Mi Lai. Balance Afghanistan against Vietnam. Balance the rapes of the Baltic
states and Central Europe against the many American invasions of South America, the de stabilization of its emerging democracies and the military support of regimes as foul as that of
Hitler. It was the US which dropped two atomic Hitler. It was the US which dropped two atomic
bombs on Japan when the latter was on the bombs on Japan when the latter was on the
verge of surrender. The US has come close to using atomic weapons several times since then.
How can we depend upon British politica How can we depend upon British politica
parties? The government of Anthony Eden handed Russian prisoners over to Stalin and almost certain death, and later ordered the inva-
sion of Suez. The government of Clement Attlee agreed to the use of atomic bombs on Japan. The Wiilson government supported the US over aet anam. The answer is that individuals must
ale acording to their own consciences, or like
lemmings we will follow each other into oblivion.
By the laws of chance, if weaponry be re tained at its present level, sooner or later, by
virtue of a technical fault or the action of person of deranged mind, disaster must follow. Yes, Steve Coleman, let us extend our scien-
tific interest in technology into a scientific analysis of society.
R. WWhithead
R. Whitehea

Sutton
Surrey

POOR DEAL FOR

AMATEUR RADIO

was very
in your April issue. My the lepy was ayailable Rey fore the lst of the month, otherwise I might have thought that this was a special "All Fools" May I first of all make it quite clear that, as many of your readers will know from my call-
sign, although I am employed by the RSGB I sign, although I am employed by the RSGB I not even work at the Society's premises. These comments are therefore made purely from the standpoint of an ordinary member of forty years
standing and a reasonably active transmitting amateur since 1948 . Everyone will regret that your correspondent receives no replies to his letters, and it is up to
him to take this matter up with the appropriate him to take this matter up with the appropriate
representatives and committee members. On the other hand however, nobody is obliged to reply to unsolicited communications which contain nothing but unconstructive criticisms and/
or impossible demands, particularly from indi-
viduls or impossisie demands, particularly from
viduals slaming to speak for many others.
Dealing with Dealing with Mr Reay's points in roughly the
same order as in his letter, first of all I do not same order as in his letter, first of all I Io not
agree that the RSGB have been anti-c.b. I have agree uar te RSGB have been anti-c. b . I have
no feelings either way in this metter, but it
seems to me that the Society dealt wish the seems to me that the Society dealt with the
matter very fairly, even issuing a list so that the matter very fairly, even issuing a list so that the
uninitiated could be told the essential differences between the two Services.
With regard to the 70 MHz band, this is of course not an international allocation but is
made available on a "grace and favour") bssis course not an international allocation but
made available on a "grace and favour" basis
subject to the requiren subject to the requirements of the priority users
of the band. Incidentally, Mr Reay, either by
accident or design, makes no mention of the accident or design, makes no mention of the with the three new h.f. bands, at the 1979 WARC as a result of much hard work done by national societies, including the RSGB. So far
one h.f. band has been allocated to UK amaone h.f. band has been allocated to UK amaworth remembering that, despite the weight of
ARRL, amateurs in the USA do not yet have ARRL, amateurs in
any of these facilities.
any of these facilities.
With regard to the abuse of the London repeaters, this is often referred to in "Radio Communication", and to close the repeaters down
would be about as logical as terminating the telephone system because some people "fiddle" coin-boxes or make obscene calls. As for
persuading the Home Office to catch the offendpersuading the Home Office to catch the offend
ers, this suggestion fails
fot appreciate the
 authorities find themselves at present, not to
mention the limitations of the Wireless Telegramention the imitaions orm.
phy Act in its present form
Concerning the RAE, I agree that this to many people seems to be more a lotery than an examination, this being all part of the general
lowering of standards. However, Mr Reay has presumably joined in the joke and obtained his callsign. If the "B" licence (introduced at the
insistence of RSGB by the way) does not give insistence of RSGB, by the way) does not give
him sufficient scope, he only has to pass the Morse test to obtain extended facilities and, by his operating, help to st
cline in amateur radio.
With regard to amateur radio being a technical hobby, not many people build or repair their equipment these days, and why on earth should
hey, unless they are so inclined? None of my they, unless they are so inclined? None of my
licences, not even the old "Experimental" one, has made any reference as to who makes my equipment; why is it, therefore, that from time
to time those who are presumably still living in the times when it was not possible to buy ready made gear, raise this old red herring. The acid test always used to be the cuality of one's signals and the manner in which the station was
operated. No-one expects Keegan to tan a piece operated. No-one expects Keegan to tan a piece
of leather for his boots or Boycott to turn his bat on the lathe!
Finally, therefore, I would submit that as a
result of having a strong and vigilant society the result of having a strong and vigilant society the
British amateur), far from being given a raw
deal, can look to the fure Beal, can look to the future with confidence. An
example of this is the prompt action taken after example of this is the prompt action taken after
the recent Home Office gaffe over the licence schedule.
If $M r$
Reay, and any who think like him, the wood through the trees.
E. G. Allen, G3DRN Len. Allen, G3D
London SW20

As an RSGB member, the letter from B. Reay in the April edition was very interesting to me, and
I agree with many of the points raised. It is sad that the growing numbers of concerred and
disenchanted members have to air their views in disenchanted members have to air their views in
a companion iournal, as the Society claiming to a companion journal, as the society claiming to
represent all radio amateurs is totall our of
touch with, and does not appear to want to tooch with, and does not appear to want to
listen to, its membership. The current licensing fiasco show the
Society is not in touch with the Home Office either, admitting in March Radio Communication "The first the Societv knew about the publi
cation of the Gazette notice was when a Member telephoned. ..". At $£ 229$, I don't subscribe to the Gazette, but surely with an income of
around $£ 700,000$ the Society should. It seems the member who kindly telephoned was lucky to get an answer - it's diffifult! to hear the
'phone with your head in the sand! When tuning across the bands you often hear someone complaining about the RSGB - not another band plan - yet more repeaters to be
introduced - the list is endless, so I wont compile yet another one here. I'II simply say to
the "OId Boys" at the RSGB, listen to the disenthe "Old Boys" ar the RSGB, listen to the disen-
chanted memership, and get a much-needed chanted membership, and get a much-needed
decent deal for the radio amateurs you claim to represent.
Peter Thurlow, G8SUH Dagenha
Essex

DATA STORAGE

In reply to the letter by B. Savage on the subject of "An economical Z-80 development system"
(Wireless World, April 10822 , I must say I find
his (Wireless World, Aprir 1982), I must say, , I find agree with him on the avaiability and advan-
tages of fast, reliable serial data transfer facilitages of fast, reliable serial data transfer facili-
ties, for bulk storage on cassette or for long ties, for bulk storage on cassette o fescribes a
distance communication, the articl
technique which allows the two otherwise separate microcomputers to become integral components in a much more powerful, versail
and self-contained development system. Using this philosophy the interconnecting wires which Mr Savage refers to present absolutely no hardship.
Parallel data transfer generally requires no error checking, communication medium band width presents no problem, transfer speed is
optimized, more flexibility is possible in the optimized, more flexibility is possible in the
software 'management' package and as an added bonus, the tape interface remains available on both systems for bulk storage.
On the subject of efficiency
On the subject of efficiency, it may be noted
that two-way handshaking is involved. This was a deliberate policy to ensure unviversal compati-
bility with 'host computers' of bility with 'host computers' of widely varying
operating speeds and with their own special data operating speeds and with their own special data
transfer facilities. Transfer speed may be improved by utilising the interrupt facilities of both computers but for absolute maximum efficiency, DMA must be used. G. Winstanley
Bio-medical Eng.

Bio-medical Eng. Unit
N. Staffordshire Polytech

AMATEURS

AND C.B

1 see from recent reports that the number of ing at a high level. I listen to the ent is continuing at a high level. I listen to the anarchy that
prevails on the h.f. bands at present I wonder why anyone bothers to go to all the expense and effort of passing the requisite examinations.
Quite often there seems to be more DX activity going on around 11 metres by illegal c.b. oprators than in the 10 metre Amateur band. One can offen hear these operators describing
their 250 watt rigs over the air and exchanging their 250 watt rigs over the air and exchanging that they consider the
cuted to be negligible.

It is when you start talking to the engineers of British Telecom who operate the detection ser Home Office that the magnitude of the problem becomes apparent. Until a few years ago com-
plaints came in from the public about interfer plaints came in from the public about interfer
ence on radio or television at such a rate that in ence on radio or television at such a rate that in
typical telephone area about 100 were waiting to be investigated at any time. During the past couple of years so many complaints have beeen
received that the backlog in many areas has risen into the thousands, completely over wheming the small deecection teams that the Home Office is prepared to pay for. In fact, on engineer told me sadly that if you confined your
illegal transmissions to the bands between 1.6 illegal transmissions to the bands between 1.6
and 30 MHz and minimized the interference you caused to to or the broadcast bands you By all accounts, the Home Office has little interest in the problem and hopes that it will just $g o$ away. An example of its attitude to radio
matters can be seen in the recent modification to matters can be seen in the recent modification tho
Amateur licensing conditions announced in the London Gazette. Here we had a government
ministry modifying the law of the land by a ministry modifying the law of the land by
decree which was so incompetently drafted and carelessly checked that even to the most casual reader several mistakes were immediately apparent. Obviously, these matters are of so
little concern to the Home Office that they can lite concern to the Home Office that they can
be dealt with by the office junior. I suppose the policing of the radio waves must
be a very dull job. But unless the Home Office gets a grip on the problem in the next few gets a grip on the problem in the next few
months it might j iust as well give up, abandon
the licensing of radio transmitters altogether the lisecsing of radio transminetrers altogethe
and open the whole radio spectrum to all and open the whole radio spectrum to all
comers. Personally, I am not sure that it hasn't started along that path already.
In the event of your using this letter, I would
be grateful if you would not publish my addres be grateful if you would not publish my address
as many of us have found to our costs that critiscism of any aspect of c.b. activity usually leads to harassment.
C. G. Howard

C. G. Howard Oxfordshire

ALIEN INTELLIGENCE
lack of response to the Japanese challenge. If your thinking is prevalent in Britain then I can
explain why. After all, if Britain were to make a exarge effort to developop 5th generation computers
as the fapanese have announced they will, then as the Japanese have announced they will, then
it would be "evidenly out to destroy all of it woould be "evidently out to destroy all of
Western industry". and so, being a decent Western industry"
nation, it doesnt t !
Please, no
Please, no more racist remarks in Wireless
World! Worla! Unteregelsbacher Kingston
Ontario
Ontario
Canada

SELF-HELP TELEVISION
V. Lewis reported in your February issue that a
licence had not yet been issued for the Redbrook active-deflector system (Selff-Help Televi-
sion, p.71). In fact, the licence was issued sion, p.71). In fact
September 14,1981
M. S. D. Granatt
M. S. D. Granatt,
Home Office.

HIGH-LOSS POWER

SUPPLY?

The low-loss power supply shown on page 4 of
your February issue is potenially letall $I t$ is essential that the evolage rating of R_{1} is not exceded as a failure could put mains volage
on the $+12 V$ terminal , having bows on the +12 t terminal, having blown up the
$470 \mid \mu \mathrm{F}$ capacitor. This usually means that R_{1} bould be at least two resistors in series. Experence shows that carbon-composition resistor ill to any value - high or low. Carbon, metalto a higher value, so stoould be used in this circuit,
Any main-suppplied circuit should have an
ppropriate fuse in the live inne. A zener clamp spy 22 Vin) across the $0-12 V$ voutput would de an
did
 fough to carry susficient current to blow (hee imes rated current of the fuse).
Direct connextion of low-voltage equipment the mains is always potentially dangerous and is best avoide
hellenham,

COST-EFFECTIVE
 IGNITION

in infortunate that you have published nother constructional aricle - Copere's arti-
le on an electronic ignition system,
march le on an electronic ignition system, March,
1882, p4 - which falls into the common trap of sing device characterisicics that are no speciried by ye manuracturer.
The devices in question are the 1×4000 series. These are lop-frequency rectifiers, and The JEDEC specification to which theirn numer ous manuacturers conform contains no in
formation abour their use at at high frequencies While the devieses used by Mr Copore were evidenty adequate, devices from another batch
or from another manufacurer could be com pletely unusable a a 15 kHz . There is no shorage of devices designed dand characterized for use voline frequency; for example, the 1 N4933 would replace the 1 N 4001 . If a 600 V rating is could be the BY299, an 800 V , 2 A fast device. R.E. Pickvance Foots Cray
Kent.
The author replies:
Mre author replies:
Mr Pickvance is quite wrong to say the article "falls into a trap", because I went to som lengths in the article to show why I used the
1N4000 series diodes and also included a graph to show their limitation, with the advice to use high-frequency diodes beyond 1 kkHz k . Perhaps
he hasn't read this part of the article? Most of the reputable manufacturers (Motorola for instance) actually provide information on the frequency characteristics of
the 1 N 4000 series althout speaking part of the JEDEC specification. One firm devotes a whole page of its data sheet to this aspect (see enclosed photostat), so they clearly acknowledge
higher frequencies. The main reason why I chose this diode is cause it is readily available to

Although high-frequency diodes appear in manuafacurers' catalogues, they are not available
from suppliers such as Electrovalue, Maplin, where in these firms' catalogues are the 1 N 4933 or BY299 diodes to be found. To reinforce this point, I rang ITT's own main stockists, VSI (tel asked them to quote for the 1N4933 and BY299. Neither firm had any stocks of the 1N4933 or price. Neither firm had any stocks of the BY299, but Nobel did at least quote a delivery 6 to 8 weeks!) and a price of 17 p. This latter irm, when they found out the application of the series as a substitute!
However, all the suppliers mentioned sell the 1N4000 series, and at a moderate cost, too-
about 50 p will buy all five diodes used in this circuit; and this brings me to my third point. If the circuit were designed around pociailized componenents instead of general-purpose components, the price would go through electronic ignition was that it could be paid for out of the savings on one year's motoring. If I
uprated the diodes it would make even better sense to substitute the TIP3055 switching transistor, improve the transformer windings, select military-grade capacitor for C_{1} and specify a
ighb-grade thyristor. This I would like to do, but there would be very little economic sense in t; it would no longer be cost-effective. Finally, I suggest that Mr Pickvance reads 1975 p. 465 , and June 1975 p .265 - and indeed yone intent on criticism, before they put pen company notepaper, would do well to read

HEATING-FUEL SAVER

Mr Ryder's central heating fuul saver is pretty
bviously going to be cost effective but it does seem to be amenable a further cost-effectiv odification. This is to add a further thermisto to measure the indoor temperature and henc
the temperature difference between inside and ut which will better reflect the time needed to As it stands there is a distinct and obvious eakness in using the device with the popula ime clocks providing a gap during the day, long or those at work and shorter for those staying a nost always reached at night and the house has ar longer to cool down, whilst during the day it possible to have quite large solar gains to Therefore it obviously makes sense to respond What may beratures. response is not really needed In cold weather the eating system loses more haeat to the outside emperature). If, as seems reasonable no inearity can be a virtue it does seem feasible to teplace R_{s}, the fixed resistor, with a combin tion of a thermistor and resistance. the actua
choice of values may be made empirically if on has a fairly good idea of the characteristics o one's own heating system performance.
An allied device would be a "iime extender' An allied device would be a "time extender
when switching off. The "off" time would b chosen to suit a warm day and the actual close
wure outside. One can usually tolerate a few ure outside. One can usually tolerate a few
degrees drop but this is a matter very much of
personal feelings, and keenness to save fuel. Wronal feelings, and keenness to save fuel. large water content there is also hot waver left large water content there is also hot water
after the boiler stops which can be used if the
pump is allowed to run longer. Thus two pump is allowed to run longer. Thus two "time extenders" can be of value - one to let the
boiler run longer in cold weather and the other a simple fixed "extender" to give about half an hour extra for the pump.
Having suggested
Having suggested that two thermistors are
needed to measure the temperature difference it might be worth experimenting, when the time clock has no OFF period during the day, with a
thermistor mounted indoors but near to a window so that it is exposed both to the outside and room temepratures. Quite obviously such a hermistor must not be exposed to the sun but unduly restrictive.
As probably 99% of domestic heating systems
re just thrown together rather than designed to are just thrown together rather than designed to
suit the actual house and the needs of its occupants, it is fairly safe to say that great precision in timing the heating will be uncalled for. The or placed radiators and many other problems so errors in timing of ± 15 minutes are unlikely to Streatfield terms of comfort.

Poole Dorse

he author replies.
I am obliged to Mr Streatifild for his con-
structive remarks. If the thermometer facility is not required, then certainly an indoor thermis tor could partly replace resistor R_{s}; or it might
e used to modulate the 555 priod, wia pin 5 . be used to modulate the 555 period, via pin 5 .
With a divide-by-two circuit (such as that of p. With a divide-by-two circuit such as that of p
$66 \mathrm{~W} . \mathrm{W}$. Nov. 79 the the a.m. and p.m. signals
from the time-clock could be distinguished a and from the time-clock could be distinguished, and
the operation modified to suit, for example by the operation modified to suit, for example by
switching the 555 timing resistor. The difficulties lie not so much in meeting a particular et of requirements, as in defining the require-

CARTRIDGE

ALIGNMENT
When dealing with tone-arm geometry the tenurrnable and to always include the arc des rribed by the stylus. If instead the stylus/car
ridge assembly is imagined to be fixed and the turnababe spindle itself moving about the arm pivot, the relative positions of stylus, spindle
and pivot are as before but the and pivot are as before but the facts are more clearly illustrated. More importantly, new fact
reveal themselves. Starting from a point representing the stylus,
a perpendicular line -a datum line - from a perpendicular line - a datum line - fro
which tracking errors may be determined drawn. Along this line may tevo detern trackin
drack radii are marked. Through these points an arc
with radius equal to the spindle-to-pivo with radius equal to the spindle-to-pivo
distance is described from a point which, course, represents the pivot. Any importan pourse, represents now be marked on the arc
directly from thay stylus point. The diagram here is drawn considerably o of scale to avoid crowding. For the same reason
lines have been omitted: in an endeavour to
avoid confusion, points are symbolized by some letters not customarily employed.
Position of spindle when stylus is on: outermost groo
innermost,
intermediate radius of high error, any radius (A B etc) included
inner zero tracking radius inner zero tracking gadius
outer zero tracking radius
D, spindle to pivot dist. (arc radius) L, sylyus to pivot
0 , offset angle
$L-D=$ overhang $=\sqrt{D^{2}+p q}-D$
angle at R.
, angle at R.

$$
\sin \frac{R^{2}+L^{2}-D^{2}}{2 L R}=\frac{R^{2}+p q}{2 L R}
$$

When this is applied to p,

$$
\sin =\frac{p^{2}+p q}{2 L p}=\frac{p+q}{2 L}=\sin O
$$

Similarly with q. $((p+q) / 2 L=\sin O$ is clear

$$
\sin =\frac{C^{2}+p q}{2 L C}
$$

Now $\sqrt{p q}=C$ therefore $p q=C^{2}$ and
$\frac{C^{2}+p q}{2 L C}=\frac{2 C^{2}}{2 L C}=\frac{C}{L}=\sin x$ at C.
To clarify this, it can be seen from the diaram that $C^{2}=L^{2}-D^{2}$. Now if we join point q to of pivot point, a triangle is completed one side hypotenuse is L, because of this

$$
D^{2}-\left(\frac{q-p}{2}\right)^{2}=L^{2}-\left(\frac{p+q}{2}\right)^{2},
$$

herefore

$$
L^{2}-D^{2}=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{q-p}{2}\right)^{2}=p q .
$$

Quickly proved by substituting figures for p and q.).
It iseful to note that while the magnitude of depends on the values of D and L, their propor-

${ }^{50}$
tions depend on the zero tracking radii. When and q are 66 and 121 , for instance, the errors at A and B are 1.7 and 0.7 of that found at C When p and q are 49 and 110 , at A the error is
double that found at C, while at B it is two double that found at C, while at B it is tw
thirds. If a diagram is drawn to scale showin only the arc, datum line and points A, B and C
ioined by straight lines to joined by straight lines to the stylus point a protractor. R. J. Gilson's factors would place a protractor. R. J. Gilson's factors
B on the other side of the datum line. It follows from the foregoing that $p+q=$
sino $2 L$. This facilitates the process of cal sin $\begin{aligned} & \text { 2Lating the zero tracking radii in a case such } \\ & \text { cul }\end{aligned}$ that dealt with in Gilson's final paragraphs pag 4, Wireless World Oct. 1981. After finding O with his ormula $4(\mathrm{~b})$, find $p+q$ from this equa-
ion. Then p and q can be found from $p q(p=(p+q)-p$. There seems to be quite a bit of
latitude for rounding off the results while ensuring negligible changes in the values of L, the ing negiuible changes in te
P. E. Cryer,
Thornlie,

Western Australia.

THE NEW
 ELECTRONICS

have every sympathy with Hugh Jacques article in your January issue - and I certainly do
not find low standards in Germany an excuse for our own low standards, as C . Wehner's letter in he April issue seems to imply (in part at least). I am now a secondary school teacher of phybuilt into education, standards here are definiely falling - but a whole re-shuffle of aims and buses and in the exams themselves all combine to camouflage the drop in standard. I have often
wondered when this fall in standard was going vondered when tiis tain in standard was going Jacques article confirms my fears.
What with a philosophy that views the child in terms of its needs instead of in terms of its
responsibility and society's expectations from it - there has developed the sort of approach which has the following characteristics: 1) educationally - the child considered in terms
of its needs must be given automatic promotions of its needs must be given automatic promotions
oo prevent any sense of inferiority, frustration or maladjustment;
2) socially - the same child must be guaranteed duced; 3) the cure for failure to learn is to devaluate
learning and the cure for social failure is to deavaluate success.
I trust this will give food for thought for concerned parents and then, perhaps, lead them oo action.
S. Georgeour
Ardgay
Rosssshire

WOODPECKER

Mt Martinez letter, (Aprill), gives an interesting Russian "Woodpecket" transmissions. There are one or two points arising from his letter The suggestion that the code auto-cortela-
tion, *i.e. the "compressed" radar signals, $^{\text {the }}$. uou, hi.e. the corpressed radar signals,
would have virtually no sidelobes may bea little optimistic. One might expect, in a practical
system, that the peak signal sidelobes would not
e more than about 25 dB at best below the mbiguity furictions of these signals to deter ine their properties in the range-Doppler do main where their sidelobe performance migh
be rather different if the radar were used to etect high-velocity incoming targets. Another point arises from the statement that
he compressed signal would have " 31 times the he compressed signal would have " 31 times the matched filter), would theoretically conserv ignal energy and its peak output would have 3
imes the peak power of the uncompressed sig nal, not 31 times its amplitude.
Finally the statement about the radar having same power, should be interpreted with cau ion. Two radars of differing pulse duration ut of the same mean power, and havin properly matched filters in the receivers, woul
have the same "sensitivity". Their difference i he present context would, as Mr Martinez states, lie in their resolution capability. Pulse
compression, as such, does not introduce some compression, as such, does not introduce some
mysterious improvement in system sensitivity with matched filter receivers, whatever the ransmitted pulse duration, the "sensitivity
remains a function of the ratio of the receive signal eneregy to noise power spectral density. ${ }^{\text {signal energe to noise power spectral density. }}$ (strictly the cross-correlation function of the ransmitted signal with that received, takin
ccount also of any "weighting" which might b used to improve signal sidelobe levels, albeit at ome expense to resolution.)
M. G. T. Hewle

Midarurst
West Sussex

THE FUNCTION OF

FUNCTIONS

was interested to read Thomas Roddam's renarks (Wireless World, December, 1981. P. P3)
concerning the notion that used to be fairly prevalent, that denies the existence of sidebands in amplitude modulation. After all, with "pure" amplitude modulation the number of cycles per be modulated or not, doesn't it? Be it said that he idea is not entirely dead even yet; there are
sill people to be found who hanker after it. And it may be said that they are in tolerably good company, too, as anybody may see for them-(pp.92-3, consulting the files of Nature for 1930
年 Sir Ambrose Fleming, no less, categorically denies the existence of sidebands, declaring on the contrary that they are but a mathematical fic-
ion, and stubbornly refusing to accept correction, and stubbornyl ref
The curious thing about it all is that the side-band-deniers have never had any difficulty in accepting that a baseband signal occupies finitite spectrum space, not realising, of course, that a
baseband signal is but two (superimposed) sidebaseband sighal is but two (superimposed) side-
bands, "centred" on zero frequency. A simple bands, "centred" on zero frequency. A simple
thought-experiment: displace the cartier frequency progressively upscale from zerro dnd observe the two sidebands separating out. And consider, furthermore, that proper re-
construction of a baseband signal to (say) audible form requires re-insertion of the zero-fri-quencycy cartrier, e.f. in the polarizing firld of a D. C. Sutherland

Wanganuil
New Zealand

MICRO-CONTROLLED RADIO-CODE CLOCK

Several standard-frequency transmissions throughout the world provide time and date information controlled by caesium atomic clocks, with potential for automatic time and date information at reasonable cost. This design offers a compromise between economy and complexity suitable for both non-critical professional applications and domestic use.

The 60 kHz standard-frequency transmission from Rugby MSF now includes fast
and slow time codes, both of which provide full time and date information once every second. The signal is transmitted 24 hours every day except for a maintenance period on the first Tuesday of each month.
The transmitter power is 50 kW e.r.p. which, with the long wavelength, provides propagation over a range of several hundred miles. With careful circuit design, useable reception can be achieved skywave and groundwave component, certain areas can experience cancellation or addition where mixing takes place. This problem is complicated because the areas of mixing change from daytime to
Fig. 1. Slow-code format from Rugby MSF
Fig. 1. Slow-code format from Rugby MSF.

recognize the start of each minute, so an identifier sequence from second 52 to 59 is provided. The most important part of the design must be capable of producing a consisten output in the presence of noise. Unfortunately there are several common sources of interference at 60 kHz , for example the
harmonics from the line output transfor mer of colour television receivers ar powerful sources of interference for v.l.f transmissions, as well as fluorescent tube fittings and even hand-held calculators Carefully designed t.r.f. and phase-locked moderate gains, but commonly suffer from self pick up which limits their sensitivity In the case of the p.1.1., radiation from the v.c.o. will generally weaken the signals.
For best results a low-current superhetero dyne receiver should be used, but it is costly and difficult to adjust for optimum noise performance at v.l.f.
An alternative receiver which is much simpler and with careful design can 3. The input stage uses a cascode circuit which enables the antenna coil to b directly connected without a transforme winding and gives good stability at high multiplier* is used for low-level detection of the 60 kHz carrier, a technique which avoids high levels of 60 kHz and therefore enhances receiver stability. The multiplier generates a double frequency component
and a differential voltage proportional to the carrier level at the two load resistors. The double frequency output is ignored by the following amplifier stage which produces the demodulation carrier. To minimize power requirement, operating
current in each arm of the multiplier is set to $50 \mu \mathrm{~A}$. To avoid drift at the multiplier output the potentiometer should be a ten-turn cermet type and the two load resistors metal film signal levels at the antennormance for all control loop to the cascode stage would
coll provide satisfactory results. However, a better method is to gate the a.g.c. loop
because the 60 kHz carrier is 100% modulated and will cause errors in a conventional loop. In this design an undelayed signal from the output of IC_{2} switches the

* Self-setting time code clock, by N. C. Helsby,
Wireless Worid, August 1976, pp?

4Fig. 4. Microprocessor decoder
gating control for the a.g.c. amplifier IC_{6}. Transistor Tr_{3} is a.c. coupled to the undelayed signal and provides a simple ime-out arrangement if no modulation is
detected. If this occurs Tr_{3} remains off detected. If this occurs Tr_{3} remains off During normal operation, when the carrier is pulsed off for up to 500 ms , Tr_{3} remains on, the transmission gate opens and switches the a.g.c. integrator to the hold
state. This action prevents the gain rising state. This action prevents the gain rising
during the normal off periods which would otherwise cause noise to be amplified and excessive overshoot in the received carrier level, which in turn causes timing errors in he demodulated signal.
simple active low-pass filter and a Schmitttrigger level sensing stage which provides a logic level output, high corresponding to no carrier. This output is inverted and buffered for t.t.1. compatifiers are used throughout to reduce the current requirements and dispense with dual supply rails.

Micro decoder

The complete decoding system is based on a 6502 microprocessor. Although this number crunching, its memory-mapped architecture and addressing modes make it an ideal choice for industrial control appli-
Continued on page 5

> DIGITAL AUDIO SIGNAL PROCESSING BY MICROCOMPUTER

The author suggests that audio-frequency signal processing is the most recent area in broadcasting to benefit from digital technology. He lists the currently ccepted digital sampling characteristics which limit the reduction of programme modulation noise, idle-channel noise, distortion and wow and flutter. The article includes a brief review of the development of microcomputers, compares analogue and digital companding and describes how companding is affected by use of a microprocessor.

From the point of view of the broadcasting industry, there can be no doubt that digital. technology carries with it numerous benefits to both listener and viewer, more than compensating for the additional complex-
ity and expense of the signal origination and transmission plant involved.
Those who possess or have heard demonstrated audio discs cut from a digitally recorded master tape can confirm the significant improvements in clarity and
fidelity now obtainable. This is in spite of the fact that the digital processing component here represents only a small part of the total recording/reproduction system. Further developments in laser optical
recording may, in the future, finally rerecording may, in the future, finally re-
solve the contentious question of what truly constitutes 'high fidelity' audio by providing, for all practical purposes, absoute fidelity between recording studio and listening auditorium.

Digital audio characteristics

Reasons for the subjective.superiority of igital audio over the traditional analogue equipment are its much reduced pro-gramme-modulation noise, idle-channel magnitudes of these improvements are deermined by the digital sampling characteristics, minimum standards for which are generally accepted to be, for broadcasting: Sampling rate: 32000 samples/sec
digital resolution: 14 -bits/sample digital resolution: 14 -bits/sample tic.
Pre-emphasis and de-emphasis are not Sential with digital audio, but giv quency noise performance for signals possessing limited energy at the upper end of he audio spectrum.
These standards provide for an audiohannel bandwidth to 15 kHz (provided of the anti-aliasing filter), and a signal/oise ratio of better than 85 dB . The needs of the recording studios, where the final output is derived from a large number of independent sources, are more stringent;
hence the use of 16 -bit sampling at rates between 48000 and 64000 per second in
WIRELESS WORLD JUNE 1982

by J. B. Watson*

 B.Eng., M.I.E.E.order to minimize signal degradation through the mixing processes.

ADC considerations

The following specification figures underline the reasons for the relative delay between the general acceptance of digital example, the 'aperture time' required of an 8 -bit, 5 MHz video sampling circuit, is only 20% shorter than that for a 16 -bit 15 kHz audio sampler; but the precision of the audio circuit needs to be better by a
factor of 256 . Thus, although proprietary video analogue-to-digital converters (a.d.cs) have been obtainable for the past three or four years, audio a.d.cs with adequate performance have only recently become available. Table 1 shows the specisufficiently accurate and sufficiently fast for broadcast-quality audio, this a.d.c. (in common with many other proprietary units) has the disadvantage of "offset-biThis means that the most critical zone in its transfer characteristic occurs at the mid-point, where the digital output changes from 011 . . . 111 to 100 . . . 000 . Since this is normally the quiescent operating region, careful circuit layout and nalogue crosstalk. A more suitable coding technique for digital audio is the sign-plusmagnitude arrangement, shown in Table 2 , which has the effect of moving the most critical region away perating point
re usually less costly than the corresponding a.d.cs, but can introduce non-linearity into the audio channel if their output circuits are 'slew-rate limited.' This problem
disappears if the d.a.c. output is resampled by a sample-and-hold device designed specifically for audio applications.
*Independent Broadcasting Authority

Table 1. Specification for a proprietary ad.c. device suitable for broadcast-quality Analogue-to-digital converter Type MP8016, Analogic:
input voltage range: -10 V to +10 V bipo
\qquad
input impedance: digital resolution: relative accuracy:
absolute accuracy:
quantizing error: quantizing erro recommended cal Wration interval: Warm-up time to
specified accuracy conversion time:
digital output code
\qquad
power supplies:
dimensions:
lar
$5.0 \mathrm{k} \Omega$
16 bits
0.0015% of full scale $\pm 1 / 2$ least sig. bit guaranteed 6 months 6 months
10 minutes .6 to $2.0 \mu \mathrm{~s}$ per bit (adjustable)

$\quad, 300 \mathrm{~mA}$
$\quad 102 \times 77 \times 13 \mathrm{~mm}$

Table 2. Comparison of offset-binary and sign-plus-magitude
 The offset binary code is easier to most commonly used in in pororietary a.d.cs. The sign-plus-magnitude code may be The sign-plus-magnitude code may be more suitable for an audio a.d.c, but suffers more sulababe for an audio a.d.c, but sum the disadvantage two equally-valid codes for zero input.

11111^{1111} 11111 $1111=+9 \cdot 9$						
1000				+0.0003		
1000	0000	${ }^{0000}$	0000=	0.00		
	1111			-0.00		
0000	0000	0000	0000=	+10.0000	"	
sign + magnitude						
01110000	1111				dis	
	0000	0000		+0.0003		
00000000	0000	0000		$0 \cdot 0000$		
	0000	0000				
0000 1000 1111	0000	0000	$0001=$	-0.0003		
1111	1111	1111	$1111=$	9.9997	"	

$\frac{\text { The } 8088 \text { is a development of the } 16 \text {-bit 8086, but communicates via an 8-bit data bus. }}{\text { 'First generation' }}$

	'First generation'(p-mos technology)			'Second generation' (n -mos technology)		'Third generation' (h-mos technology)		Future
microprocessor type	4004	${ }_{8} 8008$	4040	8080 1974	8085	8086 1978	8088 1979	${ }_{1981}{ }^{\text {i }}$ [432
date introduced	1971	8-b7its	${ }_{4}^{1974}$	8-bits	${ }_{8}^{1976}$	16-bits	16-bits	32-bits
accumulator capacity no of instructions	${ }_{46}^{4-b i t s}$	${ }^{8} 8{ }^{\text {-bits }}$	${ }_{60}^{4-64 i t s}$	${ }^{8} 111$	113	$300+$	$300+$	very many
${ }_{\text {min }}^{\text {minstruction }}$ cycle time	10.8 \%	20 us	10.8 M	$2 \mu \mathrm{~s}$	$1 \cdot 3 \mu \mathrm{~s}$	0.4 us	$0.4 \mu \mathrm{~s}$	0.1 us
memory addressing	$4 \mathrm{~K} \times 8$	$16 \mathrm{~K} \times 8$	$8 \mathrm{~K} \times 8$	$64 \mathrm{~K} \times 8$	$64 \mathrm{~K} \times 8$	$1 \mathrm{M} \times 8$	$1 \mathrm{M} \times 8$	$4000 \mathrm{M} \times 8$
no of general purpose registers power supplies	16×4-bit $+5 \mathrm{~V},-10 \mathrm{~V}$	7×8-bit $+5 \mathrm{~V},-9 \mathrm{~V}$	$\begin{gathered} 24 \times 4-\text { bit } \\ +5 \mathrm{~V},-10 \mathrm{~V} \end{gathered}$	$\begin{gathered} 7 \times 8 \text {-bit } \\ \pm 5 \mathrm{~V},+12 \mathrm{~V} \end{gathered}$	$\begin{gathered} 7 \times 8 \text {-bit } \\ +5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 12 \times 16 \text {-bit } \\ +5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 12 \times 16 \text {-bit } \\ +5 \mathrm{~V} \end{gathered}$	$\stackrel{?}{+5}$
power supplies sub-routine nesting levels no of interrupt types	$+5 \mathrm{~V},-10 \mathrm{~V}$	+50,-91	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\underset{8}{\text { unlimited }}$	$\underset{12}{\text { unlimited }}$	${\underset{256}{\text { unlimited }}}^{2}$	${ }_{256}^{\text {unlimited }}$	unlimited
interrupt latency (approx.) address, data bus width	$\begin{gathered} \text { 12 addr. } \\ 4 \text { ddata } \\ \text { r.a.m. sel } \end{gathered}$	$40 \mu \mathrm{~s}$ 14 addr. 8 data		$\underset{16 \mathrm{addr}}{6}$ 8 data	$\begin{gathered} 4 \mu \mathrm{~s} \\ 16 \mathrm{addr} . \\ 8 \text { data } \end{gathered}$	$\begin{aligned} & 12 \text { us } \\ & 20 \text { addr. } \\ & 16 \text { data } \end{aligned}$	$12 \mu \mathrm{~s}$ 20 addr 8 data	$\begin{aligned} & \text { 32 addr. } \\ & 32 \text { data } \end{aligned}$

Signal processing by

Before considering in detail the type of audio signal processing appropriate to consider the history of the development of hese devices since their introductio bout eight or nine years ago. Table 3 summarizes the characteristics of three enerations' of microprocessor originating rom a single manufacturer, the demarca rication of the silicon chip by p-channel, nchannel and h-mos technology. Details of a prospective 32-bit device are also included Of particular relevance to audio process ing are the accumulator capacity (16-bits nd interrupt response time (latency) nirs interrupt response time (latency).
First genetion devices $(4004,4040,8008)$ were relatively slow in operation, offering nstruction times of several microseconds, and possessing extremely limited - or, in errupt handling capability. Real-time processing of broadcast quality digital auio signals was not feasible with these processors, although the 8008 did find ap field as a speech processor.
Second generation processors, such as the still-current 8085, exhibit speed im-; provements of an order of magnitude over heir predecessors. With an instruction cyand 24 simple processing steps can be undertaken in the interval separating adjacent audio samples (this varies from 30 to 15 microseconds, for sampling rates of beterrupt latency is of a low order, allowing rapid re-programming of peripheral devices after the treatment of blocks of data. Self-contained hardware multiply and divide features, however, are not typical of second generation microprocessors. Comweighting factors related by integral powers of two. On the other hand, digital audio companding can be implemented 56
with this type of processor, since the essen tial feature of a companding algorithm is a multiple-bit shifting operation Extremely powerful processing possibi lities are now available, following th introduction of the 8086 and other similar These computers operate directly on 16 -bi sampled data values, have fast and comprehensive instruction repertoires includ ing hardware multiply and divide, and can
directly address memory arrays in excess of a million bytes. The very comple nature of these machines, however, neces sitates some compromise in performance in the real-time environment, the mos serious being an interrupt latency ap
proaching 15 to 30 us sampling interval of proaching high-quality audio.
This arises from the extended memory addressing and interrupt type handlin capabilities. The 8086 computer, for example, responds to an interrupt by sto memory segment register (16 -bits each) calculating the location of the appropriate interrupt vector, and reloading new program count and segment values from is thus achieved at the expense of speed the complete process occupying approximately $12 \mu \mathrm{~s}$. This trend is likely to continue with the emergence of new device types (e.g., iAP 286) capable of directly addressing thousands of megabytes of for 'mainframe' applications might dispense entirely with interrupt facilities, ince these prejudice the 'number crunching' performance.
The solution to this problem, in the critical real-time signal processing area, is
in the use of dedicated input/output processors. These are intended specifically for rapid peripheral device servicing duties, and communicate with the main
processor system via block transfers on processor system via block transers on speed improvements anticipated with the h-mos process are also likely to simplify the task of the digital audio engineer.

Digital companding

An example of the type of digital audio processing now possible with microcom and expansion (companding). Analogue companding is used extensively in the magnetic tape recording of music, where it provides an improved signal/noise ratio, spread acceptance of the Philips audio cassette as a satisfactory medium for domestic sound recording is, in fact, largely due the adoption of Dolby or similar compand ing techniques.
Analogue systems of this type separate frequency bands, each channel during recording being compressed by amounts depending upon the peak levels present inacy of the reciprocal expansion process during playback is seldom perfect, since great reliance is placed on carefully match ing the filters, ime constants and leveldependen
chains.
The processes involved with digital companding are, on the other hand, accurately reversible. The degree of compression applied by the encoder is transmitted, ogether with the audio sample values, to the decoder. No gain errors or time constant mismatching errors occur, but a degree of programme-modulation noise is introduced, he magn digital companding used It might seem paradoxical that digital companding apparently worsens the audio signal/noise ratio, whereas analogue companding improves it. This arises from the different areas of application in which the two techniques find justification, digi-
tal companding being used in bandwidth reduction rather than noise reduction. Alternatively, the companding process can be regarded as a 'trade-off between idlechannel (background) noise and modulaor bandwidth. This 'trade-off' takes place

WIRELESS WORLD JUNE 1982

A-Law	Scale factor	msb.									1.s.b.					
		13	12	11	10	9	8	7	6	5	4		3	2	1	0
7	11	0	1	\times	\times	\times	\times	\times	\times				T	T	T	T
6	110	0	0	1	x	\times	x	x	x	x			T	T	T	T
5	1001	0	0	0	1	X	x	x	x	\times				T	T	T
4	00	0	0	0	0		x	x	\times	\times	+		\times	T	T	T
3	011	0	0	0	0	0	1	-	x	x	\times		\times	\times		T
2	010	0	0	0	0	0	0	1	\times	x	\times	\times	X	\times	\times	
1	- 001	0	0	0	0	0	0	0	1	-	x	X	\times	\times	-	x
	000	0	0	0	0	0	0	0	0	\times	\times	\times	\times	\times	\times	

in both analogue and digital companding, as sensitive ears can easily reco
there is, therefore, no paradox. Many different types of digit comMany different types of digital com-
panding have been proposed, these being within two main categories of 'instantaneous' and 'near-instantaneous' (or 'quasiinstantaneouss') form. Table 4 depicts the
operation of a simple 'A-Law' instantaoperation of a simple A-Law instanta-
neous compander, used for reducing to 10 bits per sample a 14 -bits per sample audio signal. The companding algorithm is simply expressed as follows: The position of the most significant ' 1 ' digit in the 14 -bit data word is a measure of the signal magni-
tude within a $2: 1$ range. A 3 -bit digital tude within a $2: 1$ range. A
code representitg the number of leading (more significant) ' 0 ' bits in each word is transmitted with the word, the leading zeros and the most significant ' I ' being word is transmitted with a precision of seven bits, with the less significant bits truncated.
truncated. The resulting signal comprises ten bits per sample, three bits of which define the approximate value, within a $2: 1$ range
and seven the more precise magnitude within that range. One of the seven bit indicates the signal polarity. Digita sample values with more than five leading zeros experience no compression and are tion. For signals of larger magnitude, the compression takes the form of a truncation of the less significant bits, giving rise to coarser quantizing steps and associated programme modulation noise. Listeners accustomed to the digital systems have ob served that, with experience, their thres hold of tolerance to modulation noise tends to decline. Acceptable standards of performance based on subjective tests may, use of digital audio equipment increases. 'Near-instantaneous' companding makes more efficient use of the availabl channel capacity, and thus achieves
lower level of modulation noise. By deriving scale factors related to the peak ampli tudes of groups of audio samples, rather WIRELESS WORLD JUNE 1982
han to individual sample values, more capacity is availabe for accurately resolv-
ing the signal levels. In two systems reing the signal levels. In two systems re-
cently proprosed ${ }^{2.3}$, groups of samples representing a duration of approximately 1 ms are examined before defining the degree of companding appropriate to the group as a whole. Subjective comparison
tests of various digital companders tend to the conclusion that the 'near-instantaneous' principle provides a standard of performance equivalent to that of an 'instantaneous' system employing at least one more bit per sample. Many of the difschemes proposed for international programme exchange arise from attempts by their proponents to make maximum use of the different hierarchical levels available on Posts; Telegraphs and Telephones
(PTT) networks. Until detailed plans for (PTT) networks. Until detailed plans for
digital sound channels are published by the PTT authorities, however, an optimum transmission system is unlikely to be realised. Tariff structures are likely to play a more important role than technical
reasons in deciding which form of the companding, if any, should be universally panding,
adopted.
Companding by microprocessors
Since both 'instantaneous' and 'near-in Since both 'instantaneous and near-inbasic principle in deriving their respective scale factors, i.e., the determination of the position of the most significant bit in a digital code, it is possible to devise ing in either mode.
Figure 1 illustrates a digital audio compression system used in the laboratories of the IBA to evaluate the performance of a variety of companding algorithms.
The system is designed as a peripheral
interface to an 8 -bit 8085 microcomputer ine 14-bit audio samples requiring two operations per processing step because o the 8 -bit accumulator limitation. A priority encoder device (see Table 5) with comof the more significant ' 1 ' bits in the sampled data, and generates a 3-bit code
related to the compression scale factor set binary' outpen a.d.c. produces an set binary output, positive values require
to be complemented before reaching the priority encoder. This is effected by apply-
ing the most significant bit to a set of ing the most significant bit to a set of
exclusive 'Or' gates. Samples from a 'signexclusive 'Or' gates. Samples from a signquire correction in this manner. The audio samples are 'left-justified' to remove leading zeros by means of a multiplying technique. By decoding the
scale factor in the 3: 8 -line decoder shown in Fig. 1, a digital number of the form $2^{\prime \prime}$ is produced. This number is applied to the ${ }_{B}$ inputs of a pair of 8×8 parallel multiplier chips, causing a left shift (by n
places) of the data samples entering the places) of the data samples entering the
multiplier A inputs. Finally, the two parmultiplier A inputs. Finally, the two par-
tial products resulting from the 8×88 multiplying operation are combined, and the appropriate number of less significant bits truncated. Strictly, the multiply combiner should take the form of a digital adder circuit, but a simple Or gating
arrangement suffices since one of the operands is of the type $2^{\text {n }}$. The circuit described can perform either on a sample by-sample basis, thus providing an instantaneously companded A-law output,
or it can generate scale factors derived by or it can generate scale factors derived
the computer from peak measurements of groups of samples, resulting in near-in stantaneous companding.
Figure 2 shows the
Figure 2 shows the microprocessor configuration, based on the 8085 computer
and standard memory and input/output and standard memory and inpute interval between audio samples is $31.25 \mu \mathrm{~s}$ (32 kHz sampling) permitting a reasonable amount of signal processing on a per-sample basis, bearing in mind the 1.3μ sinstruction cycle time of group of audio samples can be calculated by complementing negative values, Or-ing each word with previous samples, and scanning the resultant value at the end of group. Insufficient processing power is available from the 8085 system to perform A-law companding by software, hence th derivation of 'instantaneous' scale factor

Table 5. Transfer function, 74148 Priority
The device generates a 3-bit output code The device generates a 3 -bit output code
indicating the position of the mostsignificant 0 bit in an 8 -bit word. It can be
used as the be used as the basis of a digital compande
its input signals are complemented.

Inputs								Outputs		
	76	5	4	3	2	1			A1	
	$0 \times$	\times	\times	\times	\times	\times	\times		\bigcirc	
	10	x	\times	x	\times	\times	\times		0	. 1
	11	0	\times	x	\times	\times	\times		1	
	11	1	0	\times	\times	*	\times		1	1
	11	1	1	0	*	\times	\times		0	
	11	1	1	1	\bigcirc	\times	\times		0	1
	11	1	1	1	1		\times		1	10
	$1 \quad 1$		1.	1	1	1			1	

conds necessary for conventional input/ output procedures. How incer becing orformed by the d.m.a. controller, new address pointers have to be entered before the selected location exceeds the available memory space. It is convenient to manipulate the audio samples in blocks, and to re-
initialise the d.m.a. controller at the end of each block. The execution time of the software routine controlling this function must, of necessity, be shorter than the audio sampling interval, otherwise samples could be lost. This segment of code is pulation instructions which are much faster than memory accessing operations. Software for the complete system, capable of rapidly switching between 14 -bit linear (uncompanded), 14: 10 A -law and 14: 10
near-instantaneous companding algorithms, occupies less than 1000 words. Subjective tests of the system described have confirmed that the effect of 14: 10 digital companding, whatever the algorithm, is inaudible with normal propure tones are transmitted. Results from other workers in the field ${ }^{4}$ show that 14 : 10 near-instantaneous companding provides a standard of performance virtually identical
be of great importance for satelilite transmission, where significant savings in capican be accommodated within a given band width.

Future techniques

Voice synthesis by microcomputer is a rapidly developing technique, especially for
electronic toys and games. Most such devices currently available appear to posses American or Japanese accents, so revealing their places of origin. Economy of storage culine voices, but this is likely to become minor consideration as the cost of memory chips continues to decline. Solid-state recording of high-quality musical perform ances is a more difficult matter, unlikely to be solved by the silicon chip for many of Beethoven's ninth symphony would require a digital storage array of approximately 2000 megabits. Current prices of memory chips would need to fall by scheme. Meanwhile more vable any such vices such as magnetic tape, hard disc storage and the newer 'Winchester disc' continue to improve in performance, possibly rivaling the storage density achieved by
laser-optical techniques.

In the digital processing area, one of the more interesting new devices to emerge is an analogue-to-digital converter, a signal processing computer and a digital-to-ana processing computer converter, all contained on a single silicon slice. Current technology limitations restrict its operating frequency to
about 14 kHz . However, speed improvements to at least five times that figure whereby it would admirably suit the needs of the digital audio engineer, can now b expected.

References

1. Sanchey, A A, 'A new ultra-linear 16-bit digital-to-analogue conversion system for professional audio'. 66 th AES Convention, Los An
geles, 6 -9th May 1980 . geles, 6-9t May 2. Jones, A Higital Coding of Audio Signals for Point-to-Point Transmission'. Publicatio 166, IBC London 1978.
2. de Lamare E , 'Le Codage numerique des
signaux sonores de haute qualite. ., Rerue de signaux sonores de haute qualite. . . Reove de
Radiodiffusion-television. No 44 Sept-Oct 1976 , ${ }_{4}^{\text {pp }}$ Gilchrist, N H C, 'Digital Sound Signals Tests to compare the performance of five companding systems for high quality signals'. BBC
Research Department Report, RD 1978/26. ment Report, RD 1978/26.
Based on an article first published in IBA
Techincal Review, No 15 .

Continued from page 54
cations. And because the 6502 has been chosen by many of the microcomputer manufacturers, continued production seems assured for the forseeable future. The hardware shown in Fig. 4 has been
kept as standard as possible to reduce the kept al standard ate
overall cost, and the memory map for this arrangement is shown in Fig. 5. Circuits IC_{2} and IC_{5} provide 1 K of r.a.m. for essen tial variables, the stack in pages 0 and 1 , plus spare areas in pages 2 and 3 . The throughout the bottom half of the 64 K address space. An e.p.r.o.m. containing the firmware is assigned to the top 2 or 4 K of memory with address decoding provided by IC_{14} for an expanded system.
Wire-ORing of the address decoder outputs provides addressing options. Circuit 15 is enabled at C000 (hex.) to provide sub-divided outputs for display drivers and a versatile interface adapter.
The system clock is provided by a 1 MHz crystal oscillator using unbuffered c.m.o.s. gates. This also provides the
timing for a back-up system and is trimmed for best results in this mode. Power-on reset is provided by two Schmitt inverters which allow the power supply to stabilize before the program is initiated. A potentially troublesome source of in terference for v.l.f receivers is the conventional multiplexed display, and for this reason a low-current liquid crystal type is driver circuit which will plug directly into WIRELESS WORLD JUNE 1982

the display port is shown in Fig. 6. The eight-digit panel allows six 0.5 in digits to be displayed with spaces to improve legibility. The control port of IC $_{11}$ allows different displays to be selected. It is impordisplay drivers as these include display blanking and a microprocessor interface Because the display port has been designed to drive remote displays via a short length of re 6502 data bus.
As well as displaying time and date in
formation, the evaluation system can be used with other equipment va an RS232 tion. The necessary hardware additions are shown in $\mathrm{Fig}_{\mathrm{g}} 7$. IC_{7} divides the 1 MHz clock to provide a 2,400 baud generator and IC_{19} converts the serial data from the v.i.a. to an RS232 level.

Part two of this aricle describes firmware, construction and testing. A complete kit of
components for this design will be available from Circuit Services, 6 Elmbridge Drive from Circuit Services, 6 Elmbridge Driv,

CIRCUTT DDEAS

Clock-triggered
 triangular pulse
 generator

A double pulse is applied to the inverting input of a TL081 operational amplifier connected as an integrator and a triangular pulse is obtained at the output. The required double pulse is formed by two direct voltages $-5 \mathrm{~V},+5 \mathrm{~V}$, applied to the
integrator input via a pair of analogue integrator input via a pair of analogue
switches. Two D-type flip-flops control these switches. The two flip-flops are triggered by the rising edge of the clock pulse applied to their clock inputs. When the clock-pulse triggers the two flip-flops, the
First flip-flop's Q-output becomes equal to 1 and the Q -output of the second equal to 0 . Consequently, one switch is enabled and the other disabled. Thus an input voltage equal to -5 V is applied to the integrator. When no input voltage is applied to the
integrator, $V_{\text {out }}=0$. Then, $V_{i n}=-5 \mathrm{~V}$ and integrator, $V_{\text {out }}=0$. Then, $V_{\text {in }}=-5 \mathrm{~V}$ and
$V_{\text {out }}$ increases; when it equals the reference voltage $V_{\text {ref. } 1}$ the output of the comparator goes high, and the first flip-flop's Q-output is reset to 0 , while the second's Q output is set change state, so that $V_{\text {in }}=+5 \mathrm{~V}$ and $V_{\text {out }}$

Auto-zero for

digital meters

Digital panel meters using i.cs such as the ICL7106/7 already have internal auto-zero circuitry, but this is of no use when a
particular instrumentation case requires particular instugnation case requires the d.p.m. Offset in op-amps drifts with temperature so an automatic system for correcting it is desirable. In the circuit given, box A represents circuits to switch
the instrumentation amplifers B between the instrumentation amplifers B between ence level. At the same time, the output of the amplifiers is switched between the sampling capacitors so that one holds the amplified input plus offset, and the other
holds the offset only. The differencing action of the d.p.m. cancels the offset voltage. Clock frequency should be higher than the sampling frequency of the
d.p.m.
K. Wood

Ipswich
Suffolk

decreases. When $V_{\text {out }}=V_{\text {ref2 }}=0 \mathrm{~V}$, the out put of the second comparator goes high
resetting the O-output of flip-lop 2 to 0 resetuing the Q -output of flip-flop 2 to 0 . put voltaitches are disabled, and no inConsequently V pil edge of the clock pulse trigers the flip
flops. The duration of the triangular pulse is $T=2 t_{i}$ where $t_{i}=1 / R C$ is the time con stant of the integrator.
$\underset{\text { Athens }}{\text { G. Tombras }}$
Athens

Preamp with no t.i.m.
Circuit shows a stable small-signal pre amplifier with passive magnetic pick-up feedback.
At 1 kHz , the circuit has an overall gain of 50 and its input and output impedances ar 47 k and $1.7 \mathrm{k} \Omega$, respectively. Peak-to-peak maximum input and output voltages are
0.5 and 25 V respectively.
Shausin Yang
Shausin Yang
National Chiao Tung University

Minimum componentcount microprocessor
This microprocessor circuit brings the number of components required for cerends itself particularly to machine-control design. Address bus decoding is divided up into two 32 K -byte pages and the e.p.r.o.m. is situated at 8000 or at 2 K -byte
mages up to F800. The M6802's eight interrupt vector bytes should begin at 87 F8 or its respective images. Two sets of eight o lines, A and B , are provided by the M6821 peripheral interface adapter; A addresses are decoded as 7000 and 7001
and B addresses as 7002 and 7003 . Locations 0000 to 007 F are used for the M6802's 128-byte r.a.m. Other e.p.r.r.oms, such as the 2758 or
2532 , may be used in place of the 2716 2532, may be used in place of the 2716 with only minor alterations. The two spare rate generator if necessary.
Y. C. Cheah

Wellington
New Zealand

24-to-12-hour clock

 decoderA digital clock may have a 24 -hour display, which many people would find less preferable to the more normal 12 -hour
display. For example, the time-coded radio signals from Rugby work on the 24 hour clock.
The circuit shown is an economical deThe circuit shown is an economical de-

$\mathrm{T}_{1} \mathrm{~T}_{0} ; \mathrm{U}_{3} \mathrm{U}_{2} \mathrm{U}_{1} \mathrm{U}_{0}$) to b.c.d. 12-hour $(000$
 $\mathrm{T}_{0} ; \mathrm{U}_{3}{ }^{\prime} \mathrm{U}^{\prime} \mathrm{U}^{\prime} \mathrm{U}^{\prime} \mathrm{U}^{\prime}$). If c.m.o.s. i.cs are
used
uned type 4001 (quad 2-input NOR), 4025 (triple 3-input NOR), 4030 (quad exclusive OR), 4069 (hex inverter), 4071 (quad 2-input OR) and 4073 (triple 3-input
AND) are required. AND) are required.

W. Gough
 Whitchurch

Cardiff

Accurate motor speed

control with braking

Mr Malvar's 'Accurate motor speed control' (WW Circuit Ideas, August 1980) described a circuit in which the effect of
motor armature resistance was cancelled by using the armature current to provide positive feedback to the drive amplifier. The amplifier used a booster transistor which entailed the motor stopping under open circuit conditions.
speed control is often be achieved by the addition of a transistor complementary to the booster transistor. The circuit shows this addition, with a omewhat modified bridge circuit. When o $V_{\text {REF }}$, which can be gated or switched to provide a fast stop/start (\mathbf{R}_{1} being the variable resistor). A single supply may be used.
K. G. Barr

University of the West Indies

DIGITAL FREQUENCY SYNTHESIZER DESIGN

Digital frequency synthesis is now commonplace in commercial transceivers. James Bryant discusses the design of programmable counters and prescalers for v.h.f. and u.h.f. synthesizers using a family of frequency synthesizer i.cs. He includes a description of a basic computer program which will design dividers for v.h.f. and u.h.f.

A basic frequency synthesizer, shown in Fig. 1, consists of a voltage-controlled os tector, low-pass filter and a stable reference frequency source. The v.c.o. and 1.p.f. are the most critical parts of the design, and the v.c.o. must be isolated from the output and the input to the di-
vider. Operation of the synthesizer is straightforward: the v.c.o. output is fed to the programmable divider and then compared with the reference signal in the phase comparator, whose output controls the v.c.o. The system is therefore a phase-
locked loop acting to maintain the divider output in phase with the reference input. The v.c.o. frequency is stabilized at n thes the reference frequency, i.e.
by J. M. Bryant
B.Sc.
$F_{\text {out }}=n f_{\text {ref }}$ where n is the division ratio of the programmable divider. If n is altered by unity, the v.c.o. output will change by $f_{\text {reff }}$ so a synthesizer can generate several channel frequencies which are multiples of the reference frequency. In v.h.f. and 50 kHz are normally required, although synthesizers with channel spacings down to 1 Hz or less can be built but these would normally use multi-loop techniques. Although the v.c.0., phase comparator
and 1.p.f. can be built using discrete com ponents, for a complex circuit such as the programmable divider the use of i.cs is
essential. Unfortunately, current inte-grated-circuit programmable dividers us c.m.o.s., n.m.o.s. or t.t.1., technology and 25 MHz (a little higher in the case of Schottky t.t.1.) which is not nearly high enough for v.h.f. or u.h.f. synthesizers.
One solution to this problem is shown in Fig. 2 where a fixed v.h.f. or u.h.f. pre between the v.c.o. and the divider. This reduces the output to a frequency which the programmable divider can accept, bu it also introduces several other problems However because fixed dividers using frequencies up to 1.8 GHz , this system is often used in commercial equipment. Two

Fig. 1. V.c.o. frequency is stabilized at n times the reference generated by altering n.

Fig. 2. Including fixed prescaler in divider loop allows v.c.o. to operate at frequencies higher than c.m.o.s. or t - logic allows.

Fig. 4. Multi-modulus prescaling avoids the noise problem of Fig. 3. Full counter cycle delivers one pulse for each alm+1)+min-a) input cycles. Scheme works toa u.h.f. though
the two simple counters need only work to a few MHz.

Fig. 5. Four-modulus prescaling overcomes the limitation on lowest frequency of Fig. 4.

Fig. 6. Synthesizer type NJ8811 is made from n-m.o.s. to reduce power consumption but it
also reduces chip size and the number of diffusions required.
also reduces chip size and the number of diffusions required.
system performance (noise in the reference oscillator is less important because $f_{\text {re }}$ is, tor) and the system is more complex. Nevertheless, many synthesized transceiv ers use this technique.
A better system, known as a multi-modulus prescaling, is shown in Fig. 4. The simplest form uses a two-modulus prescaler (sometimes called a swallow counter) two programmable counters are reser to zero. The prescaler divides the v.c.o. output by $m+1$ and its output pulses increment bount programmable counters. When is changed to m and the a counter stops (at his point $a \times(m+1)$. cycles of the input frequency have been counted). The n counter continues to count the prescaler output until it reaches n and passes a pulse to the phase comparator. Both counters are hen reset, the prescaler reverts to $(m+1)$
ratio and the cycle restarts. In the second half of the cycle, the system counts $(n-a) \times m$ cycles of the input frequency. Therefore, a full cycle of the counter delivers one output pulse for each $a \times(m-$ $+1)+m \times(n-a)$ input cycles, so the Thaio is $n m+a .1$.
h.f. complete system forms a v.h.f. .h.f. programmable counter, but the programmable counter only operates at a t t .1 devices to be used Also, n.m.o. or t.t.l. devices to be used. Also, althoug hey are simpler than the type in Fig. 2 and he overall complexity is only slightly reater. There are, of course, drawbacks The division ratios of a two modulus pres caler will normally be between 10/11:1 and
100/101:1, but ratios of over 20/21:1 are equired at v.h.f. if the programmable ounter input frequency is to be low nough for c.m.o.s. or n.m.o.s. devices.
For an $m / m+1: 1$ prescaler the a counter
minor problems with this approach are the high power consumption of e.c.1., and interfacing. A major and intractable problem fie effect on f ref because the introduction w to $f=m \times n \times f$.fanges the synthesiz pacing is needed, the reference frequand must be reduced by a factor of m, which will generally lie between 10 and 256 . This complicates the design of the l.p.f., in reases by a factor of m the time required or the synthesizer to lock and, unless ex worsens the noise and reference sideband evels in the synthesizer output.
In applications where this degradation is nacceptable, the use of a mixer synthe sizer as shown in Fig. 3 is often consid-
ered. The v.c.o. is mixed with a signa frequency f_{m} and the difference frequenc (fout $-f_{m \text { m }}$) is applied to the programmable divider via a l.p.f. This system has number of advantages, f_{m} can be switche o give i.f. and repeater shiffts, power co understood. However, the overall system stability depends on two oscillators (fre and f_{m}), low noise levels in the second

WIRELESS WORLD JUNE 1982
 Fig. 7. A/though NJ8811 and NJ8812, above, will generally be programmed by a ro.om: and
hannel switch they are compatible with microprocessor-based systems as well.

DP-824-24 PRINTER KIT SPECIAL OFFER SAVE £33.89 (UK ONLY)

2. if you wish to us.

2IFLTRCLEGOTHENGGE


```
*)
```



```
*)
FIVF HEN *alues." I=z wosurg gotal
```


(18:

must be programmable over a range of m and the n counter must always divide by a
larger number than the a counter. Therefore, to be fully programmable, the total system division ratio must be equal to, or greater than m^{2}. This sets a lower frequency limit for such synthesizers, for
example, with 25 kHz channel spacing and a $40 / 41$ prescaler the minimum division ratio is 40^{2} so the minimum frequency is 40 MHz .

Generally, the programmable counter sets a limit which is higher than the theo quired, four-modulus prescaling can be used. A typical system is shown in Fig. ${ }^{\text {s }}$ with four moduli, $m / m+1 / m+k / m+k+1$, which are set by +1 and $+k$ control lines. and the conditions which limit the ratios are, a must count over a range of k, x must count over a range of $(m+k+1) / k$, and n
must count at least the minimum value of a or k. For a $55 / 56 / 63 / 64$ prescaler, the divi-
sion ratio limit is 512 , which allows 25 kHz channel synthesis above 12.8 MHz . Again, in a practical system, the programmable counter will generally set a higher minimum. The overall division ratio of
this system is $m \times n+k \times x+a$ where n, x and a are the counts in their respective and a are
counters.

Continued on page 8 WIRELESS WORLD JUNE 1982

To compliment the excellent article in this issue of Wireless World, Roxburgh Printers Ltd are making an offer of
1pc DP-824F-24 Printer Mechanism 1pc DPC-4A Controller Chip pc 82910180 Paper Tear Ba 1pc 8002 Paper Roll Holder
1pc $114080-$ RO-000-SP-P Paper Roll Normal price with carriage and VAT would be Offer price inclusive of carriage and VAT is $£ 85.49$

Cheques should be made payable to Roxburgh Printers Ltd.

If you would like further data on this or the complete
If you would like further data on this or the com
range of Printers and Interfaces, please contact us.

EP4000 ${ }^{\text {hprom billator }}$
 PROGRAMMER

The microprocessor controlled EP4000 will emulate and program all the popula 508 2758 , 2516, 7716 2532 27,2732 (3) 2508, 2758,251 , 2716,2532 and 2732 de changes are not required as the machin configures itself for the different devices. Other devicses such as bipolar PROMs and 2764 and 2564 EPROMs are programma with external modules.

The editing and emulation facilities video output and serial/parallel input/out put provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.
- As a slave programmer used in conunction with a software development system or microcomputer
- As a real time EPROM emulator for program debugging and development standard access time of the emulator s 300ns

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, th keypad, the serial or parallel ports and an dada cassette. Keypad editing allows for match and scroll, and a 1 , delete, store, temporary block storage A video output for momery map diage. A video output built in 8 digit hex display allows full us of the editing facilities to be made.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - E39; Me8. 2732 A Programming adaptor £98; 2732 A Programming adaptor , 564 Programming adaptor 2564 Programming adaptor - £64;

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65

VAT should be added to all price

DISTRIBUTORS REQUIRED

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN
WW - 023 FOR FURTHER DETALLS

Sinclair versus

 BBCWhen the BBC announced that they had selec ted Acorn to produce etheir microcomputer,
Clive Sinclair was furious. He said that he could Clive Sinclair was furious. He said that he could
offer "any facilities that the Corporation might require at a lower price than any competitor".
The Sinclair ZX Spectrum is his ate " prove it and he recently launched it as "not the prove it and he recently launched it as "not the
BBC Computer". In his promotional literature he lists features included on the Spectrum and compares them with rival colour-display conputers in an attempt to prove that the Sinclair
can out-perform the others, especially the BBC model 'A', at less than half the price.
As he has invited the comparison, it is worth
taking a closer look at both the BBC model A taking a closer look at both the BBC model A
and the ZX Spectrum. The first obvious difand the ZX Spectrum. The first obvious diftional typewriter layout with 73 keys including
ten user-definable function keys. The Specten user-definable function keys. The Spec-
trum has 40 keys and some have six functions which involves extra shift-keys to get the re-
quired function. This is ofsset by the single keystroke entry of all the Basic keywords avail able. Unlike the miniature membrane of the ZX81, the Spectrum has moving keys at typewriter pitch, but instead of concave full-
keys they are in the flat, calculator style. keys they are in the flat, calculator styl with 190×256 pixels and 32×24 text: other modes are user definable. The BBC 'A' has a x 256 pixels and 20 x 32 characters. Higher definition is possible on the BBC ' A ' at the expense of using fewer colours. The Sinclair has overcome one of the major
bugbears of the $Z \times 81$, that of saving programs and data onto a cassette recorder. The Spectrum has a cassette interface the computer automatically adiusts to the tone so that the correct input level is set. This overcomes the automatic recording level fluc-
tuations on some recorders. The BBC ${ }^{\prime}$ ' uses a test tape to tell the operator when the recording level is correct after it has been adjusted manually. Spectrum can load a program Using a BEEP command, the Spectrum generate sound which may be controlled in pitch and duration, but the model A has threevoice music synthesis with full envelope control.
The ZX printer plugs directly into the Spectrum and offers the same high resolution and graphics capabilititis, without the colours, as the
screen, and can reproduce anything displayed. screen, and. can reproduce anything displayed.
Model A has no printer interface - it is only available on the enhanced model B. An input/ output port is a.
not for model A.
The BBC computer uses a version of Basic with a very large number of keywords. The ZX Basic is an extended version of the ZX81 but has
fewer keywords than the BBC. Some of the more useful keywords available to the BBC computer are AUTO for automatic program line
numbering and RENUMBER. OLD restores numbering and RENUMBER. OLD restores a
program that has been released from memory by program that has been released from memory by which are not available on the Spectrum.
However, there are However, there are some on the Spectrum
which do not occur in model A, especially VERIFY which can compare a program which
has been saved with the original; and MERGE

WIRELESS WORLD JUNE 1982

Clive Sinclair with his new colour graphics computer the ZX Spectrum
which can combine a program being loaded with more powerful file-handling facilities. In practice, both computers will be able to perform similar functions but the Sinclair may need programs.
The memory (r.a.m.) capacity of both
machines is the same at 16 K and, while the BBC machines is the same at 16 K and, while the BBC
may be expanded to 32 K , the Sinclair can have
88 K . may be expanded to 32 K , the Sinclair can have
48 K . The Sinclair claims to have more efficient memory 'packing' so that more r.a.m. is left available when using high resolution graphics.
BBC model A may be enhanced BBC model A may be enhanced to model B
and then has a very wide choice of extra facilities; analogue inputs, serial and parallel ports. An 8 -bit Centronics printer port, viewdata and eletext buffered extension bus, Red, Green,
Blue, and sync. outputs and a disc memory filing system. So far the Spectrum will operate he ZX printer. An RS232 serial interface board is to become available soon, as are the
Microdrives - miniature microfloppy disc Erives which will hold up to 100 K bytes of data. Eight of them may be linked together. Each
Microdrive will cost abount 550 Microdrive will cost about $£ 50$. The prototype was only about 70 mm wide, so the discs are very small.
Winclair has come to compare the prices, the model costs $£ 125$ and the 48 K memory model,

Flat-screen scope

rritish often forgotten that liquid crystals are a he Royal Signals and Radar Establishm at earns the UK royalties from all over the world The earlier 'twisted nematic' l.c.d used in digital watches and calculators need polarized light to make them visible, but the newer 'dye-phase-
change' l.c.d use the optical properties of dyes, change el.c.d use the optical properties of dyes
dissolved in the liquid crystal, which make them dissoved in the liquid crystal, which make them
brighter and not subject to the restricted
£175. BBC model A cost just under $£ 300$ and wide variety of peripherals from other manufacwurers: at a recent computer fair there were emonstrations of high resolution graphics, inerface for all kinds of equipment including fullsize parallel printers, music synthesizers and
ven colour graphics. If the ZX Spectrum ateven colour graphics. If the ZX Spectrum at-
racts similar support from these manufacturers, or others, it seems there could be few limi-
tations to its abilities while remaining within the price ceiling set by its rival.
Meanwhile, Sinclair Research will continue to produce and sell the ZX $81.400,000$ have been sold in a year and Mr Sinclair believes that it is
still the best introduction to computing for shose unwilling to undetratake a higher financial commitment. The price of the add-on 16 K a.m. has been reducd $\begin{aligned} & \text { rinter increased to } £ 60 \text {. Despite }\end{aligned}$ profits of Sincased tair Research over the last year,
Sinclair is looking for more capital to finance sinclair is looking for more capital to finance
some of their other activities including Clive some of their other activitites including Clive
Sinclair's pet project, an electric car. For this he
is inestigating the possibily of selling some is investigating the possibility of selling some
shares in te company Sinclair mempany.
Sinclair might not lead the low-cost colour
computer market for long. It is rumoured that Acorn, the makers of the BBC computer, are to
produce their own colour device, the Electron, produce their own colour device, the Elect
for about the same price as the Spectrum.
viewing angle of the earlier type. The debe made much larger. This, however has led to roblems of addressing and driving the display dements. Time division multiplexing may be message display with four lines of text. Oscilloscope displays are fractionally easier to
produce as the information displayed is simpler produce as the information displayed is simple
form than that presented on sesse in form than that presented on message nly one element in each column for a waveform
obe displayed. The method invented by Dr Ian o be displayed. The method invented by Dr lan
hanks of the RSRE uses row and column drive waveformis which are divided into discrete time
periods. In each period the drive waveform is
either on or off associte 11^{\prime} or on or off associated with the logic states
'
'spectively. The drive waveform is herefore binary and the sequence of logic states may be repeated every 30 ms . The waveforms an be supplied by standard c.m.m.o.s. logic cirspecial decoder/drivers. Unfortunately direct voltages cannot be used to drive liquid crystals. They would cause chemical decomposition. his problem is overcome in the 'scope display by generating pseudorandom binary sequences
in the drive waveforms. A different waveform may be applied to each row of the display. Any of these or a different set of waveforms are also waveform is applied to both row and column in waveform is applied
the matrix will there be no vow and colace difference
and so that element will be offf. As there will be and so that element will be 'off?. As there will be
voltage difference on all the other elements in avitage difference on all the other elements in
the column, they will be on' and therefore distinguishable. The vertical height of the 'off
element is determined by the choice of waveelement is determined by the choice of wave-
form for that column and this is in turn deternined by the value of the sample taken from the input signal waveform. As the eoff enement de-
pends on zero voltage difference, the device is pends on zero voltage difference, the device is
not sensitive to voltage changes caused by temperature and full performance is maintained ander a variety of conditions.
A display using this system
A display using this system was incorporated
into a prototype oscilloscope at the RSRE into a prototype oscilloscope at the RSRE, Mal-
vern, with a 100×100 element matrix. In 1977, he NRDC invited Scopex to see the work at Malvern and this has eventually led to the development and production of the first commer-
cially available flat screen oscilloscope. The Scopex Voyager has a a 628×256 element display
with a graticule of $0 \times 100 \mathrm{~mm}$ The bandwith with a graticule of $60 \times 100 \mathrm{~mm}$. The bandwidth is d.c. : io 10kHz sampled eight times for each using a successive approximation method. The it bit digital words so produced are written into
a r.a.m. in a location which corresponds to its posicion in relation to the timebase or X -axis of he instrument. The contents of the r.a.m.m. at a
particular address are used to define the pseudo-

The Scopex Voyager oscilloscope is the first commercially available to include a flat I.c. d making it smaller and with lower power requirements than conventional instruments. random binary sequence waveform for the column corresponding to that address and thus the
vertical level of the display element. Waveforms can be up-dated or held in the r.a.m. This gives a stable image to the display which does not
flicker or fade. A 'save memory' function allows a waveform to be stored after the instrument is switched off. Waveforms from different sources may be compared using the dual-trace function. an external timebase or X input converts the oscilloscope to an XY plotter. oscilloscope to an XY plotter.
At the analogue input end of the 'scope, Sco-
pex have retained their easy to use ' philosophy,
using as few external controls as possible. To this end, the vertical amplifier, trigger and
timebase imebase controls are similar to those on Scope
analogue oscilloscopes. There are ewo Y inputs to provide a dual-trace and in order to cope with
the 7 -bit resolution and the 1.25 MHz conver sion rate, a switching speed of 60ns is achieved using a Schottky diode ring gate. The 'scope is
powered by rechargeable internal batteries powered by rechargeable internal batteries
through a switch-mode supply. All this is housed in a plastics case and weighs only 2.5 kg .
Along with probes and a battery charger
presented in a leather briefcase for $£ 2,500$.

Memory key

Plastic credit cards can be damaged or stolen,
the magnetic strip information can be copied the magnetic strip information can be copied
and is limited in the amount of information that and is limited in the amount of an seom produce by a manufacturer of plastic cards, Data Card International, which is a plastic key incorporating an electrically alterable read only memory
(e.a.r.o.m.). The memory has a capacity for 30 characters and the key is used in conjunction
with a keyhole or 'Keyceptace' (sic) with a keyhole or 'Keyceptacle', (sic), with the $-a$ micro-controlled interface unit which allows the contents of the key to be communicated to a host computer. The Keytroller als is made of the memory.
The system is inherently secure as the detail are entered at random. Sections of the data may be protected oy access codes and of details or per-
suffient to contain a variety sonal data known only to the keyholder. If anyone were able to copy the key, it would be n
good without the knowledge of the appropriat codes.
The Datakey, as it is called, can be used for Tcess to areas or machines that are secur WIRELESS WORLD JUNE 1982
against unauthorised users in much the sam
way as a plastic card. It has many additiona uses as it can contain a programme for almo any computer or controller. Thus it may be used
for work and time logging, for monitoring patients or medical staff, for vehicle records etc. ability to alter the contents of the memory. can hold details of an account, and money or
other token units may be added to or subtracted other token units may be added to or subtracted
from a total held in the memory. This enables to be used as a credit card to be used with a
variety of vending or dispensig variety of vending or dispensing machines. An
example is the dispensing of petrol ait example is by
controlled by the key.
A further example of the use of the key is the
storage of instructions for storage of instructions for a machine tool. A
change of key instantly changes the instrest set without the need for re-programming o loading punched tape. Keys may be used in
combination with one key type while another may hold detains which may type while another
vary within the type.
A Datakey development system, including a
number of the keys and a kyserd nummming unit, is available toboard/display pro

Sir Kenneth Corfield (right) receives the Trol Charter of the Engineering Council
frohn Wakeham, Under-Secretary o State for Industry. The Council was set up an engine for change in shifting national attitudes and priorities'. The new Council will take over most if not all of the Engineering Institutions, especcially the upervision of the training and qualifications of engineers. The CEI has seek agreement of its members to transfer e Engineers Registration Board. The righ ime depends on the Engineering Council
and is l likely to be in about two years. If the new Council assumes all the functions of he CEI, then the CEI will ' \mathbf{u} ndoubtedly wind itself up', according to Bryan Hildrew, he retiring Chairman of the CEI in
foreword to the CEI Annual Report.

WIRELESS WORLD JUNE 198

These miniscule plastics bobbins are used in cassette tape recording head's. The sort of
thing that one associates with far Eastern manufacturers, these are Warwickshire and exported to the Far East by Dyncast International who have wost contract for eight million of them.

Intelsat VI -

a new series

Five new Intelsat telecommunications satellites series V , and will be in operation by 1987 . The satellites are to be built by the Hughes
Aircraft Company who will be jined by Aircraft Company who will be joined by an
international team of international team of subcontractors. British lion worth of orders over a seven-year period. additional spacecraft. Each satellite will be nearly 12 m tall and 4 m
in diameter with a weight of $1,800 \mathrm{~kg}$. The solar in diameter with a weight of $1,800 \mathrm{~kg}$. The solar panels will generate $2,200 \mathrm{~W}$ to power up to
3,000 two-way telephone channels and four ty channels.

In brief

0% useful energy conversion is claimed for plants each housed in cabinets $2.7 \times 1.5 \times 2 \mathrm{~m}$ and capable of generating 40 kW , are to be istalied experimentally in various sites around the U.S.A. The fuel cell power generator onverting to a hydrogen-rich fuel and then ceeding it to one electrode in a cell of phosphoric with oxygen. The cells produce heat as well as lectricity and if the heat is used for heating homes or commercial buildings, the combined output of electricity and heat represents an
energy conversion factor of about 80%. This mpares with about 30% energy conversio

Home Pa (Compres London Road, Mitcham, Surrey; their addre or postal enquiries remains at PO Box 92, 21

The spacecraft has been designed for NASA space shuttle. As the shuttle does no reach the reequired altitude for goossynchronous
orbit, there needs to be an additional booster orbit, there needs to be an additional booster
stage and a system for launching the satellite stage and a system for launching the satellite
from the shuttle. BAe will design and build the cradle for carrying the spacecraft in the shuttle
bay. This will ing bay. This will include electronics units and the power and signal interface which connects the
shuttle and spacecrat. They will also design and build the C and K band dish reflectors, other structures and wiring harnesses.
British Telecom has the second largest share in the International Telecommunications Satelite Organisations of which there are 106 members. The new satellites will help BT meet the
demand for international telephone cals which grows at a rate of more than 20% each year.
contacted by telephone at 01-648 3077 .
Thomson-CSF claim the world's fastest interrated circuit operating at room temperature, only 22 picoseconds. Structured from gallium aluminium arsenide/gallium arsenide junctions, he molecular-beam expitaxial process used is capable of controlling the crystal growth of the
various layers down to the thickness of a single atomic layer.
On 5th April, a 'magazine' called Electroni nsight appeared on Prestel. This publication is intended to provide news, comment, produc information and advertizing concerning users. The potential exists to update news the minute -24 hours a day - and readers can pass from product news to product feature quickly. The magazine's editorial and commen tary "maintains a fully independent view", say
the publishers.

LEAKY FEEDER COMMUNICATION IN TUNNELS

Since the earliest days of radio - and certainly before the advent of broadcasting attempts have been made to apply it in mines and tunnels using conventional apparatus of the day and relying on natural propagation of the waves. All these efforts were doomed to failure, and the reasons are now well understood: radio wav
propagate usefully in such conditions by any natural means.

Radio waves cannot propagate naturally to ny useful extent in mines and tunnels. Since about 1920, many attempts to use
radio in such conditions have been made, without success.
There are two important exceptions to his generalization. At very low requencies, certainy below any used for roadcasung, This property has recently been thoroughly investigated in the USA and exploited in the development of equipment itended for possible communication with trapped miners from the surface above.
Through-the-earth ranges of up to 300 m have been demonstrated, but speech modulation is not practicable at the very ow frequencies necessary and so the ystem uses baseband audio-frequency c.w. carrier (for the 'up-link'). The possibilities have been studied but discounted for British mines, where average depths are greater and mining echniques less suitable, though requipment opes and using speech modulation has been successfully used by cave explorers. Useful ranges with speech modulation have also been achieved in South African mines, where geological propagation, and special equipment developed ${ }^{1}$.
At the other end of the practical radio spectrum, waves in the u.h.f. range and above can often propagate usefully
through a tunnel in what amounts to a waveguide mode, as first demonstrated by such investigators at Foot ${ }^{2}$. This form of communication is now being considered seriously by British Rail, whose operational train communications are
normally in the standard mobile radio u.h.f. band following agreed European practice, and is also being investigated for the National Coal board by the University of Surrey. Negotiation of obstacles is the obvious difficulty, and in mining need to be devised for re-directing the waves round a corner.
In 1955 Wyke and Gill ${ }^{3}$ reviewed the
situation as they situation as they then saw it with regard to 70
by D. J. R. Martin,
B.Sc., Ph.D., F.Inst.P., F.I.E.R.E.
gives many interesting references to the utile earlier experiments. One such investigator, in sheer negation of the infamous remark 'as successful means of wireless communication have not been discovered, details of the apparatus used and experiments carried out have not been Wcluded in this paper'. attention to the possibilities ype communication in coal mines, using frequencies in the range 15 to 150 kHz and elying on 'guidance' by any conductors present, such as power cables and in fact, developed over the next decade or so and became a standard attachment to underground locomotives and cablehauled man-riding trains. Generally, it was
found worth while to install special wellfound worth while to install special well-
positioned conductors or 'guide wires' for positioned conductors or guide wires for
the purpose. By this means, reliable communication over distances of a kilometre or so could be obtained, especially if the conductor wire were galvanically connected to the base station
instead of relying on inductive coupling
there.
While fulfilling an important need in mine vehicular communications, the inductive equipment never achieved any success as a two-way personal system. The
reasons for this were the fairly high transmitter powers required (about 5 W) and the resulting heavy batteries, the cumbersome loop or frame aerials involved, and the need for fairly close applications, trouble was experienced with 'blind spots' or standing waves on the line, due to a lack of appreciation of the need for correct impedance termination or periodic phasing, and this often was the limiting
factor on range. Such inductive systems have now been completely superseded in UK coalmines by the later developments to be described, though they are still used
widely in some overseas countries, notably widely in some overseas countries, notably
the USA and West Germany.

The key to the revolution in 1956 with the publication by Monk ind 1956 with the publication by Monk and
Winbigler ${ }^{4}$ of a paper describing how v.h.f. radio communication had been v.h.f. radio communication had been
successfully maintained with a moving train in a long railway tunnel. Following a logical idea, they first installed a standard
coaxial cable (RG-8/U) through a section of the tunnel, connected to a normal base station at one end and having dipole aerials bridged across it at frequent intervals. This worked extremely well, and so the spacing between the aerials was then
progressively increased until they had all progressiveved; good communication was still maintained throughout the length of the section, although it had not been possible before the installation of the
cable. It became clear then, that the

 Fig. 1. Diagram of the basic leaky-feeder
principle, depicting how the base station B communications both ways with the obile station M through the leakage fields
of the feeder LF. The total path loss is made up of two components, the line loss and he coupling loss. communication was through the stray
fields of the cable, and there was born what is now known as the 'leaky feeder' or eaky cable' principle. was providing the necessary fields itself obvious next step was to substitute one known to have a higher leakage, and so a change was made from the coaxial to an unscreened two-wire line, a rather heavier then in common use for television downleads. This was also a more conomical type of cable to use in terms of for weight Follow
eering work of Monk Winbigler, the leaky feeder principl applied for communication in severa American underground railway systems otably the New York Subway, as ignored by mining interest worldwide, and also in the UK generally, until the present author ${ }^{6}$ commenced an investigation into its possibilities for mining use in 1966 at the same time tha milgium ${ }^{5}$. Since then, the subject has been well served with expert theoretical and ractical investigation in several countries, leading to a deeper understanding of the designs of feeder cable, as will be escribed in this part of the article. At the same time, it has been appropriate to develop new and dedicated system echniques to complement the new basic rinciple, and these will be described
-eaky-feeder principle
The basic leaky-feeder principle is illusand in Fig. b . B a convencional two way radio base station; LF is the leaky environment where communication is re quired and connected to the base station in eu of a normal aerial; M is a conventiona wo-way mobile or personal radio set, communicating with the base station throug The total path loss between the bas station and the mobile is made up of two mponehs. (a) the transmission los
station and the region of the feeder in the vicinity of the mobile; and (b) the couping loss', which is measured between the same region of the feeder
terminal of the mobile set
Note that no assumptions are made here about the direction of transmission; the principle is valid equally for mobile-tobase as for base-to-mobile communication. However, the processes involved are perhaps easier to visualize as operating in the base-to-mobile direction, and so con-
sideration of coupling loss especially is usually from that point of view. Much of he theoretical work on the subject is similarly oriented; experimental observations, on the other hand, are often more conveniently based on the reciprocal path, the feeder. Reciprocity, of course, applies to the signal transmission only, and excludes the effects of any external interfernise or internal noise sources in the path, pects are considered, and will be covered in Part 2 .
It may also be noted in passing that a leaky feeder may be used to allow direct the intermediary of a base station. In this case the feeder operates in a purely passive or 'parasitic' mode, and two coupling losses are involved in the path. This form of operation was the basis of the pioneerin elgian work ${ }^{5}$.
Consider now the separate loss comp cally a transmission line, in spits of恠 decay exponentially signal within it will is, the loss in dB will be directly proportion al to distance. Generally, this atrenuation will still be largely determined by the nor mal copper and dielectric losses, the eakage contributing little, and so a heavier and thus more expensive cable will give respect. It also follows that the attenuation rate is a stable characteristic which can be
closely predicted or specified in the design the cable.
The coupling loss, on the other hand, is a vague and variable quantity, being a
function not simply of cable leakage (howeverer that may mey of assessed) but also of the cable mounting, the environment, the characteristics and polarization of the moIn a tunnel or any enclosed space pronounced multipath effects will invitably occur, causing the instantaneous or more over short distances. Figures for coupling loss attributed by manufacturers to their cables, usually in unrealistic condiions, should be taken only as a very roug suide; an experienced system designer will prefer to work with more measurable fun gether with a knowledge of its construction and a consideration of the environment and application concerned; in this particular respect the subject is best regarded as an art rather than a science.
The longitudinal attenuation of the feeder, again, is a well-established in his account should be set as low as po sible. The leakage fields are generally con sidered to be substantially independent of frequency; however, other factors such as the availability of suitable equipment or the need for compatibility with surface quencies below 30 MHz . quencies below 30 MHz . One therefore principle operating in the standard v.h.f mobile radio bands, with a minority in the h.f. and u.h.f. ranges.

Bifilar lines

For a decade or so following the origina Monk and Winbigler pubblication, unscreened bifilar or 'balanced' types of line were used exclusively as leaky feeders, and
were shown capable of wactery shown capable of giving very satis fact, that the high field strengths being

 station or any discontinuity as a result of waves travelling with differing velocitites and
attenuation rates (based on a computer analysis by A. M. Schmidt, Technische Hogeschol,
Delft, Netherlands).
encountered in practice were far higher than would be expected theoretically from conclusion that an imperfection or imbalance was the key factor in the success o the schemes. Such imbalance would result from inevitable assymmetries and irregularites in the mounting arrangements and in
proximity effects, and led to the postula tion of a continuous or continual in terchange of energy between the low-field balanced mode and the high-field unbalanced or 'monofilar' mode; the balanced or 'bifilar' mode provided the longitudina
transmission, while the monofilar mode provided the coupling to the mobile set. It was shown experimentally that improving the balance by twisting the feeder, a might be expected, improved the longituleakage field, while 'careless' installation of an untwisted line close to metal structure or other cables would enhance the field locally to the detriment of the longitudina transmission.
Deryck ${ }^{7}$ has extensively studied the use
of bifilar lines as leaky feeders, and or biliar lines as leaky feeders, and ha devised discrete 'mode converters' for in troducing a controlled interchange energy at specific points in a feeder ${ }^{1}$. Bifilar lines were intially considered for sioned at Longannet in 1970; the requirement there was for a radio system to serve a single 9 km tunnel linking four mines underground. But condions there are ex tremely wet, and precautionary test
showed that in such an environment the showed that in such an environment the
longitudinal attenuation of the simple 'ribbon feeder' proposed for use rose drastically and became extremely unstable. In the following years, evidence also came to early railway stems were suffering from the effects of build-up of grime on their surfaces, and some were having to be cleaned regularly.

Coaxial feeders

For the Longannet system, further tests For the Longannet system, further test
were made using a standard low-loss coax were made using a standard low-loss coax-
ial television downlead in which the outer conductor braid was applied in a 'loose weave' for cheapness and which could thus be presumed to have a high leakage. It wa

Typical leaky cable of the open-braided
ypee. The dielectric is of semi-airspaced thread-and-tube construction, for
maximum velocity ratio (about 0.87). The maximum velocity ratio (about 0.87). The
iner sheath is of polythene, the outer of pvc.
able characteristics for a leaky feeder: th longitudinal and coupling losses were bot type in clean and dry conditions, but they were completely stable against surface moisture and grime, and the cable could even be installed close to a wall or along-
side other cables without detriment to the side other cables without detriment to the
attenuation. This experience established the open-braided coaxial type of feeder as the standard for use in UK mines, though the actual cables used are specially de signed heavier versions than television
downlead in the interests of robustness and a lower attenuation. This move back towards coaxial feeders has also been fol lowed generally in railway and other trans portation systems.
With the general adoption of coaxia ypes of leaky feeder, the need arose for etter understanding of their mode of operation, rather than the vague notion of leakage of energy through the interstices of the braid. At that time, screening efficiency of coaxial cables was assessed in measurable characteristic of the braid alone ${ }^{8}$. From this starting point, the pre sent author developed a theory of contin uous 'mode conversion', analogous to that
of Deryck for bifilar lines, with the surface of Deryck for bifilar lines, with the surface
transfer impedance replacing the casual transter impedance replacing the casual
assymmetries of the bifilar line? This led directly to some useful practical improvements and also predicted effects which have since been confirmed in experience, more rigorously and elegantly by such writers as Wait ${ }^{12}$ and Delogne ${ }^{13}$. The first important conclusion from the heoretical work - and in truth a prio hunch which had prompity of the cable in its normal coaxial mode was a key factor in determining the leakage fields, along with the more obvious surface transfer im pedance of the braid. In fact, changing the dielectric from solid polythene to a sem prove the external coupling in typical con ditions by 20 dB - a change that would otherwise correspond to a reduction in braid cover, for example, from 93% to not a simple one, involving also such in tangibles as the attenuation rate and the characteristic impedance of the line in its monofilar mode, parameters which mus depend heavily on the environmental con mulate a 'figure of merit' for a particula cable for direct comparison purposes; the individual parameters and a knowledge of the environment have to be considere ogether.
A further prediction from the theory on the line, quite separate from an multipath effects in the environment an any reflections which may occur from a mis-termination of the line. Potentially the mowards the beginning of the line where the base station is connected, and arises from the inadvertent launching of a aster
wave, travelling at near free-space velocity,
in monofilar mode on the outside of the feeder. Of near-identical initial amplitud initial phase opposition, it results in a mo
ind dal-interference standing wave being se up on the line - and thus in the near field

- with a wavelength several times the with a wavelength several times ithe cays at the rate of the monofilar mode attenuation, which is generally quite high; further, its effects near the base station are mitigated by the lower system loss there, which might result. In theory, it would b possible to suppress the launching of the interfering wave, or to launch another in phase opposition; however, the wave can be regenerated subsequently by any
discontinuity, such as in mounting ardiscontinuity, such as in mounting arrangements, which might occur further
down the line. The effects have not proved serious or even noticeable in the opera-
tional systems now being installed by Lontional systems now being installed by Lon don Transport.
A typical long standing wave effect a the beginning of a line is illustrated in Fig
2, which also shows the advantage in coupling obtainable through using a cable with a semi-airspaced dielectric ($\rho=0.87$) rather than foam ($\rho=0.82$). Both curve coaxial-mode and monofilar-mode attenua tion rates of $36 \mathrm{~dB} / \mathrm{km}$ and $0.3 \mathrm{~dB} /$ respectively. The monofilar-mode velocity ratio is taken as 0.95
The theory has also served to discount early fears expressed that any attempt
itroduce in-line amplification into a leak feeder would risk instability through feed back between the outgoing and incomin ections of feeder unless non-leaky 'tails' ere introduced. In fact, it can be conf dently shown that with a typical feeder
uch as the standard NCB open-braided such as the standard NCB open-braided would be necessary to incur such risk.

Field characteristics

Confusion has occasionally arisen over the use of the terms 'monofilar mode' and 'mode conversion' in the operation of coaxial leaky feeders. In his early coupled-lines reatment the present author looked upon the monofilar mode as being the whole of
the field external to the cable, and upon mode conversion as a continuous proces which maintained it. In this simple view, he standing wave at the source as seen as natural process, of establishment and synchronization of the mode. Late
workers ${ }^{12}, 13$ have taken the analysi urther and resolved the external field into wo major components. One of these identified as the true leakage or 'spilling ut of the inner coaxial mode, travelling all mplitude immediately at the source. The other is the 'inadvertent' wave, launched at the source and at every discontinuity, and ow accounting by interference for the ne truly designated the 'monofilar mode' travelling strictly at monofilar velocity and also decaying at the higher monofilar rate. Mode conversion' becomes a discre process, occurring only the launchin WIRELESS WORLD JUNE 1982
points of the monofilar mode. Rajosolving the wave on the line into two predictiononents in this way simplifies a fields away from the line. It has been pointed out that the true monofilar mode will have a larger effective radius from the line than the continuous leakage mode, by virtue of its higher phase velocity. Th relevant relationship approximates

$$
r_{c}=\frac{\rho \lambda}{2 \pi(1-\rho)}
$$

where r_{c} is the effective radius, λ the freespace wavelength and ρ the velocity ratio ree space)
Thus, the leakage field of a typical solidwould have a radius of 1.14 m . Use of foam dielectric cable (e.g. 'Radiax', $\rho=$ 0.82) would increase the radius to 2.6 m . Changing to a semi-airspaced type (e.g.
NCB standard, $\rho=0.87$) would increase it to 3.8 m . Against these figures, the veloc ity ratio of the monofilar mode is very close to unity and its effective radius will be several times greater again.
In fact, experiments in the Mersey (No . 1) tunnel have shown the field at 170 MH z to be reliably maintained across the full
width of the 12 m carriageway from a feeder of semi-airspaced construction installed along one side. This suggests that in such practical situations of larger tun mode resulting from 'inadvertent' mode conversions must contribute substantially and usefully to the observed fields, though in smaller tunnels thent detrimental
sical picture mode is considered, the phyTEM wave with the outer conductor of the cable forming the inner conductor of a larger coaxial structure having the tunnel wall as its outer conductor. At low propain larger tunnels, the electric field lines will tend to curve and eventually will break away from the tunnel walls and return to the cable, in the manner of a Goubau wave supported entirely on the cabl
entirely through induction fields, and so the use of the term 'radiating cables' in respect of leaky feeders in general is incorrect. It is true that any discontinuity which
causes mode conversion may in the same process provoke 'inadvertent' radiation; this may be useful or even necessary in larger tunnels or at higher frequencies by extending the field in the same manner as the monofilar mode, but otherwise the setting up long standing waves.
The simple picture becomes complicated by severe distortions in the fields, caused by irregularities and obstacles in
the tunnel and by the induction-field equithe tunnel and by the induction-field equilarization away from the feeder in such conditions is generally found to be random, while signal anplitudes can vary locally by he 20 dB or so that is typical for convenWIRELESS WORLD JUNE 1982
built-up areas. But, as will be seen later in discussions on systems techniques, there need be no dins in such variations.

Practical feeders and

their installation
Bifilar feeders have the advantage of being comparatively cheap and lightweight, but their use should be considered only in clean and dry conditions where they can
also be installed at least 20 cm clear of walls, structures and other conductors;
even then, their variability makes them sysuabe for use in long repeatered systems. The one-time favourite type, RG
$86 / \mathrm{U}$, has in fact not been manufactured $86 / \mathrm{U}$, has in fact
for several years.
for several years.
A bifilar type could, however, meet need for an extemporized system in a dry and clean underground environment such as the worked-out stone quarries that have been used as store depots in Wiltshire, or
for a temporary system for use during maintenance of a dry tunnel. A good choice in such a situation would be 300Ω

n

Fig. 3. Types of feeder used in underground communications. At (a) is a foam-dieleoctric, open--braid coaxial type, and at (b) and (c) two kinds of bifiliar f federer for us in in lean
conditions. A solid-dielectric cable with an open braid is seen at (d). The opan-braraid coax.

 screen and foam dielectric.

ting up 'inadvertent' mode conversions or even radiation. Mounting arrangements except at the higher frequencies (e.g. in the u.h.f. range) or with excessively open braids. Surface contamination
neither coupling nor attenuation.
neither coupling nor attenuation. had a solid outer conductor with a continuous longitudinal slot, giving an aperture
of typically 25% of the circumference and of typically 25% of the circumference, and
having a solid or foam dielectric. Such a having a solid or foam dielectric. Such a
cable has sometimes been considered incable has someiumes been considered in-
termediate in its mode of operation between a bifilar and a coaxial type. Indeed, it has proved to be very dependent on mounting position, in the manner of a vantage of cheapness.
A type popular in the USA and Canada has discrete holes milled in an otherwise ('Radiax'). In mode of operation it is closely similar to the open-braided type. However, there is some evidence, with
theoretical support, that 'hole size' is the theoretical support, that hole size is the
key factor in determining the susceptibility of the longitudinal attenuation of a cable ot the mounting arrangements and surface contamination. For a given surface transfer impedance - and thus coupling efrieffects will be better with a larger number of small holes than the converse, and in this respect the braided type must be supreme e it should be noted that total opti-
cal cover is not a reliable indicator of cal cover is not a reliable indicator of
coupling efficiency, and is not in question here).
The milled-hole type has a foam dielectric, which is slightly less favourable than
run counter to the main purpose in such circumstances, that of spectrum
conservation. The term is clearly best voided. On the other hand, the epithet
leaky leaky' has outraged some manufac-
turers who seem more concerned urers who seem more concerned
bout the image of their product than with scientific accuracy, and 'leaky feeder' has come in for ribald com-
ment. There have even been some qualms expressed in academic circles quout the strict meaning of 'leary' as
applied in transmission-line theory. applied in transmission-line theory. reason for preferring the former is that conceivably an open-wire line
could be used land in fact was considcould be used (and in fact was consid-
ered at one time for NCB use) and this could hardly be described as a 'cable'.
 and systems; the torm is certainly proferred by most serious investigaors of the subjoct, and in particulara is now general in the USA and mainland varian
self.
seff.
It is also worth noting that the inter-
national working group advising the XVth Plenary Assembup advising the such matters recently came down in
favour of 'leary cable,', and this
ecommendation is likely to prevail.
pect of the all-important phase velocity. in the UK employs a 'punched tape' struction, with an outer conductor made of struction, with an outer conductor made of
copper foil in which discrete holes have copper foil in which discrete holes have are even larger than those of the milledhole type, and so such cables should b used with discretion where close-mounting is inevitable. The dielectric construction is
the favoured thread-and-tube. Leaky
both 50Ω and 75Ω characteristic in pedances, and it may well be asked which is the better choice. So far as the leakage is concerned, the considerations are more complex than might appear, but whateve
difference may exist in practice is dikely to be significant. When it comes to longitudinal transmission efficiency, standard textbook treatment applies as for conventional coaxial cables, and shows tha 75Ω is close to the theoretical optimum
For a fuller treatment of the various types of practical leaky feeder, and an assessment of their relative performance reference is recommended to the paper by Cree and Giles ${ }^{44}$.

INIEX systems

It has been shown earlier that in order to account for the strong fields that are con sistently maintained at distances of many wavelengths from a leaky feeder it is neces-
sary to postulate the occurrence of 'inad vertent' mode conversions at irregularities in the feeder or tunnel. The resulting monofilar modes generally have a large effective radius than the 'true' leakage field, though they are attenuated comparacontinual regeneration. Delogne ${ }^{5}$ has developed a system in which inadvertent mode conversions are replaced by deliberate conversions, which may be inserted into the cable run at carefully determined points. Furthermore, the cable itself is a conventional non-leaky type; the true leakage field is thus abandoned and eliminated, and communication is entirely through the closely regulated
monfilar mode. The system has been spon sored and promoted by INIEX, the Bel-
gian 'Institut National des Industries gian 'Institu
The main advantage of this 'INIEX-Delogne' system is that the interchange of energy between coaxial and monofilar
modes is entirely under the control of the system designer and thus can be optimized for best use of the energy available by careful design and spacing of the mode could comprise a single large hole in the outer conductor; in practice, both conductors are usually interrupted and the gaps bridged by reactive elements. The spacing is typically 100 m , but the system may be 'graded by varying the spacing according maintaining a consistent performance regardless of distance form the base station. The devices are normally installed in pairs, spaced a quarter-wavelength apart, to give
a forward directivity to the launch of the
monfilar mode.
Since only one mode is present, there is natisk of potentially troublesome lon over a wide range of frequencies, be used over a wide range of frequencies, typicall
down to 2 MHz , by designing the mode converters to suit rather than by changin the design of a leaky cable. Against this, it could well be disadvantageous to have to interrupt the cable run at such short in tervals. More important, perhaps, is th
need for the cable to be kept well clear o walls or metal structures for the whole of the run, for if the monofilar mode become dissipated inadvertently by such a proxim ity effect it cannot be egenerated until th spot' could result.
At frequencies above the tunnel cut-of frequency - say, in the u.h.f. band for road or twin-track rail tunnel - the INIEX-Delogne system operates dif-
ferently. Here, the monofilar mode is lerenty. Here, the monofilar mode is useful. Instead, the radiation which the mode-converter also provokes now launches a wave in the tunnel itself. In this
case, the cable mounting case, the cable mounting arrangement be-
tween mode converters is immaterial since the cable is not called upon to support a monofilar mode. At even higher frequencies, of course, the tunnel propagation im proves beyond that of the coaxial mode of the cable itself, and so the system then the negotiation of corners and obstacles. In a later development ${ }^{16}$ the discrete mode-conversion devices are replaced by lengths of leaky feeder inserted into the otherwise non-leaky cable run. This 'leaky
sections' technique operates broadly on the same principles as before, but offers the advantage that the alternating leaky and non-leaky sections could be arranged in the manufacture of a continuous cable, so tions and connections of the cable in instal lation.
The length of a leaky section in such a
system is fairly critical, and the optimum system is fairly critical, and the optimum
can be shown to be equal to

$\frac{\rho \lambda}{2(1-\rho)}$

where λ is the free-space wavelength and ρ is the velocity ratio of the leaky cable sec tion. Not surprisingly, this is one-half the length of the long standing wave which the
original coupled-line theory shows would be set up at the beginning of a continuous leaky feeder of the same type.
It also follows simply that the monofilar mode set up by such a leaky section will have an initial amplitude 6 dB greater than
the true leakage field of the corresponding continuous feeder. Furthermore, of course, it will have the advantage of the increased effective radius over the leakage field. Against this, the amplitude will de-
cay at the rapid monofilar rate, and so the cay at the rapid monofilar rate, and so the
6 dB advantage will usually be lost before the next leaky section. Again, the leaky section will operate
more as a radiator than as a mode more as a radiator than as a mode
converter at frequencies above tunnel cutconve
off.

A prime objective in the development of INIEX systems has been to achiev from a system without recourse to in-lin repeaters or other active techniques. Onc
active devices become necessary active devices become necessary, as they
normally do in any case beyond a few kilo metres, the use of these systems become less attractive. However, there is no funda mental reason why they should not b
used, in the same leaky feeders, with the astive systems tech leaky feeders, with the active systems tech To be concluded

References

1. B. A. Austin: Single-sideband transceiver design. Underground application uses simple
ceramic wideband filter, Wireless World, Vol 84, pp. 75-6, Feb. 1978

. .. B. S. Foot: Transmission through tunnels,

 Wireless World, Vol. 56, pp. 456-8, Dec. 1950 3.P. N. Wyke and R. Gill: Applications ofradio type mining equipment at collieries Procedings of the Inssititurion of Monining gles, lectrical
and Mechanical Engineers, Vol. 36, Nov. 1955, and Mechanical Engineers, Vol. 36,
pp. 128-37 pp. 128 - N. Monk and H . S . Winbigler Communication with moving trains in tunnels,
IRE Trans. Vehic. Comm., Vol. PGVC-7, Dec.

1RE Trans. Veh 1956, pp. $21-8$ 5. R. Liegeois:
 1956, pp. 2l-8 5. L. Liegeois: Télecommunications

souterraines et telécommande par radio dans la
mine, Bulletin Tectime mine, Bulletin Technique INIEX 'Mines et in French)). 117, Oct. 1968, 51 p. (Belgium; in $\begin{aligned} & \text { in } \text { French) } \\ & \text { I. R. }\end{aligned}$ mines and tunnels, Electronics Letters, Vol. 6 No. 18, pp. $563-4$, , red Sept. 1270
7. L. Deryck: Etude des modes de propagation d'ondes électromagnétiques susceptibles d'exister sur une ligne bifilaire en milieu souterrain, Annales des Mines de Belligue, 1970
No. 7/8, pp. $939-49$, July/Aug. 1970
8. G. W. A. Dummer and W. T. Blackband: 8. G. W. A. Dummer and W. T. Blackband:
Wires and RF cables, (Pitman, London, 1961) W. ires and RF cables, (Pitman, London, 19 .
9. J. . Martin: Transerred surface current
in in braided coaxial cables, Electronics Letters,
Vol. 8, No. 18, pp. $465-6,7$ th Sept. 1972 Vol. 8, No. 18, pp. $465-6,7 \mathrm{th}$ Sept. 1972
10. D. J. . Martin: A general study of the leaky-feeder principle, Radio and Electronic
Engineer, VII. 45, No. 5, pp. 205-14, May 1975
11. L. Deryck: Control of mode conversions on 11. L. Deryck: Control of mode conversions
bifilar lines in tunnels, i ibid, pp. 241-7 bifilar lines in tunnels, , ibid., pp. 241-7
12. J. R. Wait: Theory of transmission of 12. J. R. Wait: Theory of transmission of
electromagnetic waves along multiconductor lines in the proximity of walls of m 13. P. P. Delogne and M. Safak:
Electromagnetict theory of the leaky coaxial
cable, cable, ibid., pp. 233-40
14. D. J. Cree and L. J. Giles: Practical 14. D. J. Cree and L. J. Giles: Practical

23 . P. P. Delogne: Système INIEX/Delogne de telecommunications et telecommande par radio, A nnales des A ines de Belgique, 1972, No. 11, pp
1069-81, Nov. 1972 16. P. P. Delogne and L. Deryck: Underground
use of a coaxial cable with leaky sections, ILEE Trans. Ant. Prop., Vol. AP-28, No. 6, pp. 875-
83, Nov. 1980

Further reading

Other authors who have contributed significantly to a basic understanding of leaky
feeders include J. C. Beal, Q. V. Davis P. Veeders include J. C. Beal, Q. V. Davis, P.
Degauquu, B. DDemoulin, A. S. C. Fernandes, J. Fontaine, R. Gabaillard, D. A. Hil
R. Johannessen, R. J. Slaughter schmidt.

MICROPROCESSORCONTROLLED LIGHTING SYSTEM

This final article describes the overall operation and performance of the prototype lighting system. Details are given of the operating system, equalization table, and the hardware required to set-up the control desk's processing and recording modes.

Before discussing the operating software used in the lighting system, its relevance is best understood by considering the layout
of a typical control desk, as shown in Fig. 1 , and how such a desk is operated. The desired lighting pattern is set on the channel faders (presets), and this pattern is
stored in the processor-system memory by pressing the 'record' button associated with a particular master fader, or 'master preset'. This pattern will be recalled and sent to the dimmer modules whenever its
associated master preset is not at zero. associated master preset is not at zero.
Assuming for the moment that only one master preset is at a non-zero setting at any one time, any other master preset may now be used and another lighting pattern set in the same manner. Hence, a complete
lighting pattern may be stored for each master preset.
There are two ways in which these stored patterns may be controlled using the master presets.

- Scaling - the equivalent of analogue control-desk processing - in which each preset level and the resulting signals sent to the dimmer channels. Relative levels of the channels are maintained at all times. - And stepping, where the master preset levels and the lesser of the two levels used for output. This type of processing is used to build up a lighting pattern, i.e., al dimmer outputs rise according to the level predetermined levels. In an analogue control desk, this type of processing would require very complex circuits.
By using more than one master preset at a time, lighting patterns can be gradually another. As the operating program end lessly polls all the faders and record buttons, any lighting pattern produced by combination of master and channel preset may be recorded by simply pressing the

Operating Software

The operating program and the 'look-up' or equalization table, are contained in jus over $1 / 2 \mathrm{~K}$ byte of p.r.o.m. The require of the control desk. Around 256 bytes are required for the operating program and

* University of Keele
by John D. H. White and Nigel M. Allinson*
$N(M+1)$ bytes for lighting pattern storage, where N is the number of channel presets and M the number of master presets. Except for the largest of systems, 2 K bytes of r.a.m. will suffice. Organization of the data structures is shown in Fig. 2. The present memory stores the lighting-pattern
preset levels associated with each master preset. The output-buffer memory is used
to store the required lighting pattern temporarily, before the levels are converted to output signals for the dimmer modules, using the equalization table.
The equalization table performs two im portant functions. Firstly, the scaling process entains numerous channel and master preset levels. Without an external multiplier unit, most microprocessors carry out multiplication reatively slowly (some recen
microprocessors, such as the 6809 and 9995 have such a multiplier internally). The multiplication problem could have

Fig. 2. Data structures used in the control-desk software. M is the number of master presets, Fig. 2. Data structures used in the contro
and N is the number of channel presets.

Fig. 1. Layout of a 30 channel/10-master control desk.
been solved by using a logarithmic a-to-d converter, but in this case, logarithmic-law aders were used together with a look-up
able containing base 2 antilogarithms for the 256 possible levels - hence, multiplications become simple additions.
cel
Secondly, the table provides compensation for the non-linear relationship beween the fader position and the subjective brightness of the lamps, mentioned in the
first article. This code transformation is first article. This code transformation is fairly difficult to formulate, and will be of formation used in the prototype system which combines both this subjective rrightness compensation and the antilogaithm conversion, so this coding is given in able 1.
The operating program is not listed beand consists of only eight short sub-routines and three core-routines for lighting pattern recording and processing. hould be possible to program. most microcomputer systems to provide the facilities described. The program tests data present on the data bus to decide whether scaling/stepping processing, or recording
mode is required. The hardware needed for this is described in the next section. Note that, to reduce processing time to minimum, there are a number of condiional branches dependant on channel or master levels being zero.

Process/record select circuits

The operating program must test whether tepping/scaling processing, or pattern recording is required. This could be achieved by connecting the control desk's form of keyboard encoding, to a programmable i/o device (such as the $8155 / 6$). However, since mapped-memory techniques are used for all other data input and output, a single i/o port can be connected
directly to the data bus which is enabled when the $10 / \bar{M}$ status line goes high. Figure. 4 shows the process/record-select circuit. When the 'record enable' key is pressed, the octal encoder (74148) is enabled and its output will stay high until a
master-preset record key is pressed. The three RS flip-flops connected to the octal encoder are reset, and hence the 4 -bit binary counter (74163) is enabled. The counter outputs are connected, through a 4-to-cross-lines in the master-preset 'record' key-matrix. When a key is pressed, at least one of the encoder's outputs goes low and disabiles the counter. The three--state bufis low, and the input data is W/R or M/O the processor data bus. Also, the four inputs to the NAND gate ($1 / 27420$) are high, and on the next rising edge of the system-enable, $\bar{E}, a^{~} 0$ ' is clocked out of the D-type flip-flop and the four RS flip-flops
are reset. The next $\overline{\mathrm{E}}$ pulse will enable the system again. The 0 input of the octal encoder is not used, as a low level on this input will cause all three outputs to be high

> 1 Theories and Miracles 2 Electromagnetic Analogy 3 Impact of the Photon 4 A more realistic Duality? 5 Quantization and Quantization 6 Waves of Improbability 7 Limitation of Indeterminacy 8 Haziness and its applications 9 The State of Physics Today

THEORIES AND MIRACLES

Enormous gaps exist in our understanding of Nature, and many of our fundamental theories are not very credible. In a controversial review of current doctrine in nine instalments, Dr Murray investigates the electromagnetic theory, photons, duality, quantization, matter-waves, indeterminacy and haziness, and reviews the state of physics today.

Many thousands of professioanl radio engineers can design television transmitters, and almost anyone can build a radio re-
ceiver, but there is nobody who can exceiver, but there is nobody who can ex-
plain in a plausible and watertight way plain in a plausibe and watertight way from the Crystal Palace transmitting tower
to the H -aerial on the roof of my house. to the H -aerial on the roof of my house.
This transfer of energy - the radiation This transfer of energy - the radiation
process - is miraculous, if we define a "miracle" as a physical occurrence for which we can offer no physical explanation. (I'll just say that again: a miracle is a physical occurrence for which we can offer no physical explanation). It is just over 100
years since James Clerk Maxwell gave us a good working description of what happens - the equivalent of saying that if you lie in hot sunshine you will get sunburned but he did not explain the radiation phenomenon; and nobody has explained it since.
Here, then, is a fine example of modern Here, then, is a fine example of modern
technology in action. We know how to build a radio transmitter and we can calculate very accurately what will happen when we switch it on. Something will travel from transmitter to receiver at the speed of
light, and we shall be able to detect its arrival and make whatever use of it we please for our convenience and entertainment. But except that it may consist of physical energy, or at least that it may
carry physical energy with it, we have no idea what it is that does the travelling. Confronted with this true statement of our human ignorance, ninety-nine people out of every hundred will probably say they do not care. The radio is for listening
to, not wondering about; wondering about such things is a job for scientists. But now we come to the crunch, for I have to make a similar report to you about the attitudes of the scientists themselves. Nine out of they didn't care - they are far too busy to be bothered with such abstract, impractical matters. On the other hand, the one physicist in ten who does care about such things is likely to be seriously worried. minority, their concensus view would al-
by W. A. Scott Murray B.Sc., Ph.D.
most certainly be that vast gaps exist in our knowledge of physical phenomena that take place not only in complex laboratories and remote galaxies, but also "right on our
doorstep" - of which domestic radio radiation and sunlight are commonplace examples. From a purist point of view it is a pity that our progress in understanding such things should have come to a grinding halt in about 1920. (The fundamental basis 1907, and that for the laser in 1917.) Of the new concepts which have arisen in physic since that time very few, if any, have dealt credibly with fundamental matters. I in clude in this category the major speculative
adventure of the 1930s, which failed amid general confusion and is one of the main topics to be examined here.
There would seem to be little doubt that progress in fundamental physics, as op
posed to technology, has not kept pace posed to technology, has not kept pace
with contemporary progress in othe branches of science during the past fifty years or so. It should have done, in view of the number of physicists at work all over the world, but it hasn't. Every now and
then, it is true, some new hypothesis seems locally promising and is hailed as triumph; but when one seeks to apply it elsewhere it does not fit, and it leads on sooner or later to a logical impasse. Nowa days, for reasons that we will explore in
due course, we no longer reject a failed hypothesis as we should, but instead we tend to retain it on the pragmatic basis tha it may prove more useful to have wrong concepts than no concepts at all. From tha point it is very easy to forget that they are
wrong concepts - scientifically disproved - and instead to go on building upo them as if they were true and valid: a elementary mistake, surely, but one which we go on making.
trouble in modern physics, so that it is the
rule rather than the exception. The cumu-
lative effect of such errors has been confusion on a majestic scale. We are left with a
tangle of separate, uncoordinated, and very often mutually-exclusive concepts. "Sometimes light behaves as waves, sometimes as particles", it is said, yet the concepts of electromagnetic light-waves
and particles (photons) are mutually excluand particles (photons) are mutually exclu-
sive. Our picture of the physical world has become less clear, rather than more clear with the passing years. This, I submit, is evidence of a lack of progress. In the 1980 we have to admit that we have not yet
found answers to some simple but imporfound answers to some simple but impor-
tant questions which were asked as long ago as 1920 , and even earlier.
Now when you have been searching diligently for something for fifty or sixty years and failed to find it, it may be sensible to
pause and consider whether there might pause and consider whether there might
not be some reason for the failure. In our present case two possibilities are more likely than others: either the thing we are looking for doesn't exist, so that we are mistaken in looking for it, or we are lacles. Let us examine these two possibilities in turn.
There is a doctrine of modern physics, whose origins we will identify later and criticise, which says that scieniuic theories
are limited in their application to providing descriptions of physical events, and are intrinsically incapable (in an absolute sense) of explaining them. According to this doctrine, questions of the nature "what happens?" may give rise to descripcourse - and are legitimate questions, whereas questions of the type "how?" or "why?" cannot be answered by science and are therefore improp
which should not be asked.
To take an example, experiments show convincingly that all negative electruns are identical in their behaviour - "indisting uishable" in the approved jargon - and that short of its complete annihilation the
physical properties of an electron never physical properties of an electron never
vary in any way; one never comes across
electron. Now: to the structure of an electron so "Why is nally stable?", current doctrine returns the answer that the mass of the electron is so small that its structure must be quantumindeterminate, which means that the question of its mechanical stability does not arise. That question is a non-question, an For convenience of reference I propose to call this the Doctrine of Haziness: "Microphysical entities are hazy, and one should not ask old-fashioned questions cious indeed of this doctrine. It seems to be just a little too flexible in its application to be intellectually honest. For instance, in another example,
Question: Why are the wavelengths of the spectrum lines from a gas in a
discharge tube so precisely defined? discharge tube so precisely defined?
Answer: that electrons can assume within the atoms are precisely quantized.
Question; Oh - I thought it was the lectron's angular momentum that was quantized?
and angular momentum are precisely quantized.
Question: If that is so, then the position of an atomic electron must be precisely cleus?
Answer: We cannot tell you that, because of the Uncertainty Principle of Professor Heisenberg. We can only tell Question: So its energy and momentum Question: So its energy and moment precisely determined? Answer: That is so; they may take on any values within Heisenberg's limits. Question: Then why are the spectral wavelengths, which you now say are
dependent on indeterminate energy and momentum, themselves precisely defined?
Answer: Your questions pre-suppose hat the atom has a mechanical structure. Our modern theory is a ma-
thematical theory, not a mechanical theory. Hence the questions you ask are meaningless.
Question: But I thought you said the mathematical theory dealt with energy ordinary mechanical quantities?
Answer: You are wasting my time. It is a matter of statistics. Look up the theory in any textbook.
You will have noticed the testiness of one which arises characteristically at that
point in the discussion. We shall look into that little "matter of statistics" and form conclusions about it which are not entirely conventional. As I said earlier, the doc-
trine of haziness seems a shade too convetrine of haziness seems a shade too conve-
nient to be true. It enables its adherents to wriggle out of logical impasses by sheltering in mysticism, a particular mysticism which as we shall see is linked directly to an unexpected and, as I shall assert, erroneous and quite unjustified denial of the which can bear being looked into. The
doctrine of haziness also offers comfort to the lazy physicist (or shall we say, the toobusy physicist?). Current theories suggest
that Nature may be stranger than our that Nature may be stranger than our
forbears thought, for human understanding. If so, we should not be surprised that we have made so little progress recently. (I need hardly emphasize that if this defeatist attitude should become held generally - and it seems to be gaining ground - it must
spell the end of the philosphical road for physical science.)
The other possible explanation for our failure to achieve that steadily-improving understanding of the working of the physi-
cal world which human instinct (and previous experience in physics, and current experience in other disciplines) suggests we ought to be achieving, is that here is something there to see but that we have been looking for it with the wrong
spectacles. We cannot see radio waves or spectacles. We cannot see radio waves or
electrons with the naked eye, of course, but we infer their existence from the readings of our instruments. Our "electron spectacles" are not the instruments we use, but the scientific theories with and against current theory is an expression of a contemporary attitude of mind.
We can be, and historically often have been badly misled by our theories. To take a classically familiar example, in times past sky could be described to any desired degree of accuracy on the basis of the Earth being the dynamic centre of the universe. It could be explained - that is, accounted or rationally with a minimum of underlying assumption - much more readily by perience we have come to believe that the more closely a scientific theory reflects the mechanism of the physical world, the simpler will its concepts appear and the
wider will be its field of application. In this example, planetary astronomy had been bogged down for a thousand years under he geocentric theory, and progress had pended on the rejection overthrow of pended on the rejection or overthrow of
the geocentric theory and its replacement by geocentric theory and its replacement
by alternative which is still in use today. And what an advance that proved to be! One of its earliest consequences wat
Newton's law of universal gravitation. We may perhaps read gravitation. We may perhaps read that experience
across into the area of fundamental physics where our recent progress seems to have been surprisingly, and disappointingly, slow. Slow progress does not prove that anything is wrong with our current theo-
ries and doctrines, but it raises that possibility. It is possible that some of our fundamental thinking may have been on the wrong lines (and by wrong lines I mean
lines which do not accord with those of physical Nature). If so then much of the physical Nature). If so, then much of the
elaborate, self-generating and untested structure of mathematico-physical theory that has been built up during the past fifty years may turn out in the end to have been
irrelevant, if not actually misleading I irrelevant, if not actually misleading. I am
suggesting that the time is now ripe for a critical review of modern physical theory,
much of which has not been of a type inspire confidence. body of opinion which in the teeth of al maintained that the Earth, as the abode o Man, must be the centre of the physical universe. To such opinion no factual proo was convincing: one can neither prove no
disprove an Article of Faith. Thus disprove an Article of Faith. Thus the
ancient polarisation between churchman and scientist tended to continue. Yet it is feature of modern physics, unexpected bu explainable, that in its philosophy it is more akin to a religion than to a classical science. Mysticism has returned in a big
way. It seems that in the fundamentals area we are dealing with matters of faith and doctrine, dogma and heresy, so that formal experimental proofs are no more to be expected in fundamental physics nowa-
days than in a theology. There may even days than in a theology. There may even
be resentment against anyone who presumes to question the One True Faith; but this time the conservative Establishment is likely to be found within the ranks of
science itself. science itself
The significance of that remark will be-
come clear when I declare my main thesis, come clear when I declare my main thesis,
which is that physical science made a sequence of errors during the 1930s from which it has never recovered. I am in good com-
pany in this, since that view was to pany in this, since that view was to a
greater or lesser extent shared from the early days of Quantum Theory by Einstein, Planck, von Laue, and Schrodinger, all of whom were central in the original arguments. Theirs was a "realis-
tic" view, which in the climate tic view, which in the climate of the times
did not prevail against the novel, mystical did not prevai against the novel, mystical others. The last-mentioned became established and remain formally accepted today. But attitudes may now be changing after fifty years: at any rate I hope so. I propose
to identify some of the errors in the 1930's doctrines, show that they were indeed errors, and show how they came about. To my physicist colleagues I say, If your faith is not strong enough to withstand such
criticism you should read no further, for I criticism you should read no further, for I layman I say, Here for you entertainment is a real-life, up-to-date version of Hans Andersen's famous story of the King's New Clothe
To sum this up: every scientific theory is
somebody's particular pet. Rather than somebody's particular pet. Rather than
attack the established theories of physics - which would force their doting owners to rush to their defence, and lead to quite unnecessary altercations - I propose to
examine a selection of miracles. A miracle, you will remember, is a physical occurrence for which we can offer no physical explanation. There are plenty of miracles to choose from, so we can afford to be selective. We shall find that our miracles
have a certain hallmark about them, from which we can deduce not understanding, perhaps, but clues towards understanding. The nature of current theories will become safe - philosophically safe - to use these theories, and when dangerous. When fully developed this technique should enable us

ERROR CORRECTING SOFIWARE

Software solution avoids complexity of convolutional coding; program computes error signal which would have been the output of a convolution decoder.

In digital equipment a single parity bit is often added to a word to increase reliability
by detecting an erroneous read For words by detecting an erroneous read. For words tape, floppy discs, cassette or magnetic tape we can time-share the single parity bit idea. Here the parity bit is formed from the data bits of the current word and one data bit per channel staggered to produce

Fig. 1
Using a technique described in Wireless World, "Improved parity checker" Jan 1981, p. 81/2, multiple errors can be deected, although only a single parity bit is errors would be detected.

(b) No error detected

(c) Error detected

Fig. 2
If the parity bit at the transmitter wa coded for say even parity then on reception result in an odd parity for this area of bits. This fact signals an error has occurred. Single error correction with regard to the error signatures produced will be as shown in Fig. 3.
Howeve which although detected gives an error

by N. Darwood

Parity channel Data channel 3		0	0	0	0	0	0		
		0	0	0	0	0	1		0
" "	2	0	0	0	0	1	0		0
	1	0	0	0	1	0	0	1	0
"	0	0	0	1	0	0	0	1	

Fig. 3
signature which corresponds to the single
error signature of channel 0 in Fig 3 error signature of channel 0 in Fig. 3.

Fig. 4

If error correction is required then thi problem can be overcome still employing by applying more complexity to the tim sharing of the data bits. An example of more complex template is given in Fig (a) together with the single error signa ares. This template was formed almost nd it appears single errors give unique signatures. Armed with this fact we can detect multiple errors and correct single rrors.

The error detecting software described is useful to

- assess the merits of a particular template
- as a progra in its own ribu place of hardware
to test (2) or for the following reason.

The procedure described here is a form of convolution code. This can be seen by converting the parallel characters to a se rial bit stream using a serial shift register Fig. 1.
ore complicanvolution approach is
cribed here, but the theory of convolution coding does show that the defining polynomial of Fig. 1 is

$$
\begin{aligned}
& \mathrm{X}^{1}+\mathrm{X}^{7}+\mathrm{X}^{13}+\mathrm{X}^{19}+\mathrm{X}^{25}+ \\
& \mathrm{X}^{26}+\mathrm{X}^{27}+\mathrm{X}^{28}+\mathrm{X}^{29}+\mathrm{X}^{30}
\end{aligned}
$$

Hence the software approach described an be useful in investigating convoluting codes where here the template, i.e. the polynomial, can easily be changed.
The prompts given by the program and he inputs required in response are shown used for the template data.

ig. 7. Prompts given by the program and inputs required in response.

A column is indicated by the decimal equivalent of the binary code where a 1 ind hat is, an input to the parity-generating ardware
Having completed entering the template data a continuous series of decimal values is in response to the prompt N where N is

WIRELESS WORLD JUNE 1982

Fig. 6. Software approach described is much simpler than convolutional approach to Fig. 1
template in which parallel characters are converted to a serial bit stream by shift register.
Errors

Fig. 9

Error pattern
$\begin{array}{ccccccccc}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 17 & 8 & 0 & 1 & 33 & 0 & 3 & 2\end{array}$
the N th error pattern in the series. An error pattern is simply a character with or without errors, Fig. 9.
For each error pattern input the program computes the error signal which would have been the hardware output of the convolution decoder, that is it comthe template area. The output is a one if an error is detected and a zero if no error is detected.
The program assumes that even-parity was transmitted and thereafter an error ts from and parity in the template.

108 LET $\mathrm{N}=\mathrm{N}+1$ 110 IF $\mathrm{P}(\mathrm{W}+1)<0$ THEN 990

120 FOR I=1 TOW
130 LET P(I) $=\mathrm{P}(\mathrm{I}+1)$
140 NEXTI
150 LETE $=0$
150 LETE=0
160 FOR $\mathrm{I}=1$ TO W
170 LETA=T(I) (AND) P(I)
175 LETE $=A$ (EOR) .
180 NEXTI
187 LETA=0
190 FOR I = 1 TO 15
194 LETE=E(SHFT,-1
200 NEXTI

Error detecting program
 210 PRINT A (AND) \# 1 220 GOTO 104 990 END

10 DIM T(15), P(15)
20 FOR I=1 TO
33 LET P(I)=0
35 NEXTI
38 PRINT "TEMPLATE WIDTH IS";
40 INPUT W
50 PRINT "INPUT TEMPLATE CO-
LUMN VALUES 1TO" W
60 FOR I=1 TO W
70 PRINTI
90 NEXTI
92 PRINT "ENTER CHARACTERS"
100 LETN=
104 PRINT N
107 INPUT P(W+1)

A block diagram of the program would show that for each error pattern input value, Fig. 9, the previous \mathbf{W} values, Fig. 8 , are right-shifted one place and the last
one drops off the end to retain W values one drops off the end to retain W values. Figs $8 \& 9$ are first ANDed with the template. This results in one word. The bit pattern of this one word is parity checked,
i.e. the bits counted modulo 2, down to .e. the bits counted modulo 2, down to one bit by the exclusive-OR instructions.
This bit indicates an even number of bits in the checking area if zero, and an odd number of bits in the checking area (the emplate) if one, which indicates an error. To change the template the program is reteger is entered as data.

Digital frequency synthesiser design
 Continued from page 64

Integrated circuit two-modulus and four-modulus v.h.f. and u.h.f. counters general purpose c.m.o.s. and t.t.1. programmable counters. However, dedicated 1.s.i. circuits which can interface directly with two and four-modulus prescalers have only recently been introduced.
The diagram in Fig. 4 shows a two-modulus prescaler with i / o ports and a control line which is used to alter the division ratio. The input may be balanced or unbalanced, but the output and control norsimilar four-modulus prescaler which uses two control lines instead of one is shown in Fig. 5.
At frequencies over 1 GHz , separate prescalers or mixing techniques must be will operate up to 1.8 GHz and can drive an SP8906 four-modulus divider. Therefore, synthesizers using this combination will have a channel spacing of four WIRELESS WORLD JUNE 1982
times the reference frequency. The highest output frequency available from an 2.142 MHz . An n.m.o.s. synthesizer circuit, the NJ8811, which has been designed for use with the 8906 and 8901 is shown in Fig. 6. This device contains the program-
mable dividers, reference divider, phase mamparator and a data buffer which enables it to be used with a 4-bit data bus for programming by a r.o.m. and channel switch or a microprocessor system.
Using the NJ8811 and SP8906, in the synthesizer which operates from 40 to 512 MHz . The programmable reference divider allows the choice of sixteen channel spacings, via two program control lines, rom a single standard 4.8 MHz reference SP8901, channel spacings and frequency ranges are doubled. The NJ8812 shown in Fig. 7 is almost identical to the 8811 , but is designed for use with the SP8793 prescaler in low-power synthesizers at frequencies
up to 200 MHz . This combination has an average power consumption of around 55 mW and is therefore suitable for portable equipment.

Page 64 is a Basic program for designing v.h.f. and u.h.f. synthesizers using the i.cs described earlier. The first part of the program requests frequency limits, channel spacing, injection mode and other de-
tails of the required synthesizer. The cir cuits to be used and interconer. The cirthen determined together with the reference frequency and reference division ratio for minimum reference harmonics in the working band. The second half of the program requests details of the individual channels required and provides r.o.m. program was written for a PET 2001 computer, although it will run with other Basic computers with minor dialect modifications. The compact form of program and liack of REM statements is due to memory in its present form it works well and is a useful aid for designing frequency synthesizers in the v.h.f. and u.h.f. range.

COMMUNICATIONS

Radio-frequency or data processing?
Modern radio communications, it is often stressed, represent the marriage of data processing with traditional radio-fre quency technology. But sometimes the problem is to determine which is the dominant partner. The r.f. engineers often feel that they are in danger of being smothered
by the embrace of the systems-approach o the computer people. In an analogue the computer people. In an analogue mization tend to be admired more than the "go/no-go" attitude of the digital designers. Digital technology has advanced
spectacularly, tending to obscure the steady improvements in crystal filters, mixers of great dynamic range and th opening up of a whole new world by low noise microwave amplifiers.
Glancing through the technical-papers (still at the time of writing in the future though already over when these note appear) one notes - a little regretfully that relatively few of the 80 or so papers
cover the more traditional r.f. subjects of cover the more traditional r.f. subjects of
receivers, transmitters, aerials and r.f. propagation. The themes are mostly allied to what was once called "telecommunications" with networks, switching, multiplexing, electronic (telephone) exchanges and fibre-op
prominent among them.
Nevertheless, work continues in the r.f field. New techniques for land-mobile (admittedly including digitized speech), radio pagers with monolithic v.h.f. receiver
(STL work on direct-conversion f.m. tech (STL work on direct-conversion f.m. techchips); more progress on the s.s.b. polar loop transmitters developed at the Univer sity of Bath and showing one effective way in which v.m.0.s.-type devices can provide good linearity at v.h.f.); a University of (also with the land-mobile service in view) the intensive work on developing galliumarsenide integrated circuits for microwave receivers int chis case br Plessey, Research elsewhere).
The Communications 82 programme may not promise many entirely new developments, but does reflect continued puter/communications marriage is clearly well past the honeymoon period and seems to have settled down to quiet domesticity. But r.f. must be careful not to be domi-

F.e.t. or bipolar

r.f. power?

Recent years have seen the appearance of practical r.f. mosfet power devices with
the basio V-groove or alternatively "hex" the basio - -groove or alternatively "hex
or " T " vertical channel structures where the rather difficult V -groove is replaced by ${ }^{9} 4$
a gate within a straight service. This has given the designer of m.f., h.f. and v.h.f
transmitters new scope, and much has been made of the freedom of such devices from secondary breakdown and thermal runaway, although there is still a vital need
to avoid even momentary over-voltage to avoid even momentary over-voltages
that could cause gate punchthrough. The older bipolar devices can often (but no always) provide greater linearity at v.h.f (this can be overcome by such technique as the polar-loop arrangement and for
some stringent applications including am plitude-compandored s.s.b. the powerfe may prove superior). It is easier to bias a bipolar device for Class B operation. Input impedance of the mosfet is more constant with varying drive levels, and intermodu-
lation distortion can be lower. A larger di is required for comparable power with the mosfet. Each form of device has advantages and disadvantages and there is seldom a clear-cut, no-choice situation Motorola however has recently shown an
interesting form of Class D (switching) interesting form of Class D (switching
amplifier based on power mosfets that can provide 1 kW output at up to 10 MHz with an efficiency of 85 per cent and a power

Thought-provoking

antennas

Most of the books published by the amateur radio organizations are stronger on surveying accepted theory than on taking a searching and thought-provoking look a
ideas that have been accepted by amateurs (and professionals) over a number of years. Once an idea has been widely accepted it tends to survive without further critical examination. But a new book (which deserves to be read by all concerned with h.f
communications and h.f. broadcast recommunications and h.f. broadcast re-
ception) is a notable exception to this rule. ception) is a notable exception to this rule. A. Moxon, G6XN - a name familiar to readers of Wirreless World - who has a highly professional communications back-
ground and combines theory with practice to a rare degree, with specialist knowledge of aerial theory and h.f. radio propagation (one of the first persons in the U.K. to recognise the important implications of
Albrecht's work on chordal hop). But he Albrecht's work on chordal hop). But he
also possesses to an unusual degree an unalso possesses to an unusual degree an unwhy "sure-fire" designs so frequently fail to live up to the designer's expectations while at the same time often prepared him to introduce novel ideas. The current scene - professional a
well as amateur - includes, he considers "sell as amateur - includes, he considers, leading to "consequent waste of much time, money and effort in the pursuit of
better results by methods which either better results by methods which either
have no chance of success or lead to undesirable compromises of one sort or another; in addition it has ensured that
irtually all such designs have been some degree, or in some respect, sub-opti-
mum". Experimental findings, he stresses, hould always be subject to the test "does it make sense?". His advice is, however positive as well as negative, with recompractice. Equally remarkable is to find in a 1982 publication 260 well-illustrated pages

in hard covers selling at $£ 5$.

The III-V

emiconductors

The development of 12 GHz receivers for domestic reception of satellite broad casting is clearly going to emphasise th mportance of current work on III-V semiconductor technology, now being eve
more intensively pursued to overcome the more intensively pursued to overcome th
imitations of silicon technology, partic arly at microwave frequencies. Relatively nfamiliar terms such as "mesfet" (metal emiconductor field effect transistor) and
digfet" (diamond gate structure field "digfet" (diamond gate structure fiel lfect transistor) are emerging from the vailable for u.h.f. television receivers available for
(3SK97 etc).
The "Annual Review 1981" of Plessey's Allen Clark Research Centre at Caswe
shows clearly the many application oreseen in the communications field fo both discrete and integrated circuit device ased on semi-conductors using materials ade from combinations of Group III ele ments of the periodic table (boron, alu V elements (nitrogen, phosphorus, arsen and antimony). Indium phosphide InP, fo xample, is increasingly yielding millime ric active devices including advance
field-effect transistors. Gallium arsenide is field-effect transistors. Gallium arsenide is
being used for power f.e.t.s and fo meing used for power f.e.t.s and for Plessey, Texas Instruments, Hewlett-
Packard and Hughes have all reported progress in this field.

AMATEUR Ravole

dBW carrier power

Although many of the technical anomalie and actual errors of the now notoriou February 12 licence schedule have been corrected - and the whole question of power" limitations above 1 GHz has been deferred pending further consideration, the revised schedule still retains the controversial "dBW carrier power
supplied to the antenna" definition. It replaces the traditional "d.c. input power" i.e. total direct current power inputy to (i) WIRELESS WORLD JUNE 1982
the anode circuit of the valve (s) or (ii) any
the anode circuit of the valve (s) or (ii) an used for some 60 years as the basis of the licence for modes other than s.s.
Admittedly, 20 dBW output power is
oughly equivalent to 150 W d.c. input. So roughly equivalent to 150 W d.c. input. S this change of definition. Presumably it has been made as part of a general move on the part of the licensing authority to stan dardize all licences issued under the Wire less Telegraphy Acts. But there are surel
valid objections to the change and it seem a pity that the R.S.G.B. seems to have conceded the point.
In the first place the syllabus for the Radio Amateur's Examination has neve understand or use decibel notation; bu even more to the point is that relatively few amateurs have test equipment capable of measuring acurately the carrier power
supplied to the aerial (and is this the power supplied to the feeder or to the actual supplied to the feeder or to the actual
radiating element - often two very difradiating element - often two very dif-
ferent things?). Nor is there any real reason why amateurs should be forced into acquiring such a measurement capability A d.c. input limitation encourages high-
efficiency amplifiers and sets a clear, and easily measured, limit to the power. The delays and problems in respect of the new "schedule". were reflected in the time it took to issue new licences to thos who passed the R.A.E. last year. The situ-
ation in the U.K. compares unfavourably to those in many other countries. In Swe den, for example, where the multiple choice technique is also used, it is possible to take the examination on any working day throughout the year and to be told
whether you have passed or failed at the time. The Swedish Morse examination (no test for Technician licence for v.h.f.; 8 w.p.m. for 10 -watt Class C novice c.w. licence; $12 \mathrm{w} . \mathrm{p} . \mathrm{m}$. for 75 -watt Class B
licence; 16 w .p.m. for 500 W Class licence; 16 w.p.m. for 500 Class A candidates sending is recorded. Sweden is even prepared to issue "guest" licences to foreign amateurs on merit without in sisting on an official reciprocal licenc agreement. One result is that there are
some 8500 licences in a population of about 7.5 -million, and Swedish amateurs are a pleasure to contact, reflecting the sensible regulations.

Cable tv problems
In North America leakage of amateur sig-
nals into and out of wideband cable television systems is becoming a major problem to radio amateurs. It has even been termed a new strain of the radio-frequency-inQST editorial by Richard Palm, KICE He points out that while, on paper, cable WIRELESS WORLD JUNE 1982
are non-broadcast facilities close to the outside environment this is often far from being the case in practice. But it does mean that the frequencies used for distri-
buting television signals along relativer buting television signals along relatively
leaky co-axial cables are chosen by the leaky co-axial cables are chosen by the
industry itself on economic grounds alone industry itself on economic grounds alone
The result is that the distribution frequencies are more and more often within th v.h.f. bands allocated internationally and by the F.C.C. to amateur radio. Instead o being true "closed-circuit" the systems
leak signals out into highly-used bands leak signals out into highly-used bands,
including 144 MHz , in violation of F.C.C standards and so ruin weak-signal re ception by amateurs, but are also themselves frequently susceptible to strong
local transmissions from amateur stations local transmissions from amateur stations
operating fully in accordance with their licences. When viewers complain to the cable companies, A.R.R.L. suggest "many companies promulgate the myth that the amateur is at fault." Poorly
shielded components and installation, poor shielded components and installation, poo
maintenance of the cable systems, th choice of frequencies with amateur bands are all adding to the problem, while the current cut-backs in the American govern ment-funding of F.C.C. mean that the re-
gulatory organization is now in the throes of a financial crisis and "willing but unable to enforce its rules" on the cable com-

An h.f. convention
V.h.f. conventions in the UK have a long and extremely successful record stretching back over many years, attracting at-
tendences of over 1000 enthusiasts. But attempts to organise equivalent conventions for h.f. enthusiasts have a more cancelled for lack of support. However this has not deterred the R.S.G.B.'s h.f. committee from organising an ambitious oneday event at the Belfry Hotel and Confer
ence Centre, Milton Common, some miles along the M40 (Exit 7) from Oxford, on Saturday, June 19. The programme includes a trade exhibition, lectures, forum, films, a special display and demonstration of low-power (QRP) operation
with the co-operation of the G-QRP-Club with the co-operation of the G-QRP-Club
using the call-sign GB2HF. A talk on h.f aerials, including those for 10,18 and 24 MHz , is to be given by Louis Varney,
GSRV while the writer of these notes is GSRV while the writer of these notes is
trying to work out what to say about h.f communications receivers.

Hazard of PCBs

The recent disclosure that there was a large spillage of polychlorinated biphenyls (PCBs) in 1981 due to bomb damage in mer shows once again that there is still a lot of this highly-dangerous substance
around. For many years PCBs were widely used as a coolant in oil-filled transformers and capacitors, including some used with fluorescent lamps. Manufacture did not
stop in the U.K. until 1977, following the stop in the U.K. until 1977, follow
discovery of its dangerous effects. discovery of its dangerous effects.
Any oil-filled component that show signs of leakage should be treated with care. A useful test recently suggested by Brian Castle, G4DYF is to take a piece o copper wire. Put it in a gas flame and burn off the dirt until the flame is clear. Allow
the wire to cool, then dip it in the suspec oil and return it to the flame. If it now burns yellow, it is ordinary oil. If it burns bright green, PCBs are probably present. Note that this is not a positive test but does provide a use

Here and there

A new 28 MHz beacon is expected in operation shortly on Gough Island in the
South Atlantic. With callsign ZD9GI it South Atlantic. With callsign ZD9GI
will operate il operate on 28.2125 MHz . A balloon carrying a $146 / 432 \mathrm{MH}$ pected to reach heights of 15 to 20 km is due to be flown several times this year in South Africa. After reaching its maximum height the balloon is expected to burst an the equipment come down on parachute at
distances up to about 250 km from the launching point. As it comes down 144 MHz transmitter will be activated to allow the package to be tracked by d/f and recovered.
Membership of the British Amateur
Television Club is expected Television Club is expected to reach 1400 microcomputer is well suited to the BBC of slow-scan television suited to the displa tic tv sets. The club has recently publishes tic tv sets. The club has recently published
a special issue of $C Q-T V$ (no 117) largely a special issue of CQ-TV (no 117) largely
devoted to amateur television equipmen for the 24 cm band. It also proposes a plan for this amateur band including a main t repeater channel (output 1242.25 MH
vision, input 1274.25 MHz vision an alternative repeater channel (output ternative repeater channel (output
1250.25 MHz , input 1282.25 MHz) and a simplex amateur television channe (1258.25 MHz). In each case the sound Fhannel would be 6 MHz higher.
Forthcoming mobile rallies: June 20
Denby Dale at Shelley High Scel Denby Dale at Shelley High School, Skel-
manthorpe, near Huddersfield. June Longleat mobile rally organized as th Bristol RSGB group's 25th event; Rolls (6 miles south of Skipton). July 11 Wor (6 miles south of Skipton). July 11 Wor Road, Droitwich. July 18, Pembroke's
"Bucket and Spade Party", The Regency "Bucket and Spade Party", The Regency
Hall, Saundersfoot; Sussex rally at Hall, Saundersfoot; Sussex rally at
Brighton Racecourse; and Cornish rally at Technical College, Cambourne.

PAT HAWKER, G3VA

NRZ RECORDING FOR SMALL COMPUTERS

The majority of small computer recording systems use the Kansas City cassette recording to zero recording system for the Nascom 1 and 2 - the circuit should be adaptable to others - and compares performance with that of the Kansas City interface.

Most small computer systems, in particular those machines offered to the amateur user, have adopted the audio cassette as a
convenient method of data storage. Cassette players are readily available at a low price, the only reasonable alternatives being open-reel recording or expensive disc drives. The Kansas City recording stan-
dard, developed to use the audio cassette dard, developed to use the audio cassette, its tolerance of tape-speed variation, typically 30%. This allows users to exchange recordings between machines of most any type. But this speed tolerance is the only significant advantage of the
system - its disadvantages are susceptibility to tape dropout and slow data speed. Some systems optimistically offer a data rate of 1200 baud, but using cheap cassette decks the best that can normally be at-
tained is 300 baud. The encoding and decoding circuitry involved is fairly complex, using as many as seven or eight large-scale integrated circuits, and enables the user to adapt either the existing audio cassette reorder, or use a "bare-bones" deck, with only.
Using one of the worst cassette decks I have encountered reliable recording was
achieved to a rate of 1200 baud, with fair achieved to a rate of 1200 baud, with fair operation to 2400 baud $17 / 8$ in $/ \mathrm{s}$. The only
disadvantage of this is its in tolerance of speed variation: 5% instead of the 30% offered by Kansas City, assuming that the usual uart (universal asychronous receiver-

By L. Hayward

transmitter) is used in the computer. This speed restricition will normally only be a disadvantage if tape transfers from one recorder to another are to be made. Any recorder having a cyclic speed variation of
greater than 0.5% would be totally useless greater than 0.5% would be totally useless
for musical reproduction, and most cassette recorder mechanisms can achieve better speed regulation.
The n.r.z. system is well known, and has been used in computing systems for
years. No h.f. head bias is used, and the tape is magnetically saturated in a negative
or positive sense, depending on whether a zero or a one is written. There is no condi-
ion of zero flux, hence the name: nonion of zero flux, hence the name: non-
return to zero. As the tape is saturated no erase head is required, and the system is less sensitive to tape drop-out or variation between various types of tape. Ideally, the system should use heads and tape designed practical results have shown however, that ordinary heads and tape are quite suitable. The use of certified digital cassettes such as the Scotch type 834 A is recommended
for the most reliable operation. The circuit shown was specifically designed for use with Nascom 1 and 2 computers, but

Heretics guide to
 modern physics

Continued from page 81
to judge the physical credibility of any new hypothesis, providing us with a critical faculty which
been woefully lacking. the first miracle we shall examine will namely the mechanism of the transmission of light energy through empty space. Our first philosophical milestone will be consequential and closely related to it: an understanding of the true function of "waves" in modern physics. We shall have to go back
some 200 years in scientific history to find a suitable starting point. Our route will take us from Newton to Heisenberg: via electromagnetic theory and the acute distress it suffered when denied an aether; ia practicable photons, quantization, nonciple of Indeterminacy; and ultimately to an affirmation that the Law of Causation is obeyed in physics not only statistically but in all circumstances. In each of these areas which although far removed from convenWIRELESS WORLD JUNE 1982

tional scientific doctrine are yet strictly in accord with the findings of experiment. self-consistent whole, but not yet, I regret, to a fully-developed Theory All that I have to say is very simple, and ndeed I hope to show how simple Nature really is when the dust of man-made confusion has been swept away. William of Occam said that fundamental assumptions
should not be multiplied and I am a follower of William of Occam.I
C.b. frequency synthesis

In Fig. 4 of the article on 40 channel c.b. frequency synthesis, which appeared in the November 1981 issue of Wireless World, there should be a 1 nF capacitor in the line between the bottom end of L_{1} and the MV2110 variable-capacitance diode.
Without this capacitor the a.f.c. is inoperative.

4049 is used to hold the state of the previous positive or negative excursion, and thus output restored data to the
u.a.r.t. Hysteresis is used to make the u.a.r.t. Hysteresis is used to make the
output insensitive to spurious small outputs from IC2. The u.a.r.t. requires the the receiver input terminal remains high until the data transmission begins. An in hibit input is provided, which when high prevents IC2 from changing the Schmitt
trigger output. This point is conveniently trigger output. This point is conveniently
connected to the drive l.e.d. transistor collector in the Nascom, thus making the computer ignore all data until the 'c Load' or ' R ' command is executed. The suggested divider circuit is useful if the stan-
dard data rates of 300 and 1200 baud are dard data rates of 300 and 1200 baud are
required from the Nascom 1. Power supply required is a single +5 V supply; current drain is so small that an existing computer supply should easily accommo date it.
I suggest that circuits such as this be
included in small computer systems as an alternative or addition to Kansas City. It shouldn't be too difficult for manufacturers of ready-built systems to offer a completed cassette system as part of the pack-
age. If such devices are made available with accurate speed control, thus giving interchangeability, it is likely that the more logical n.r.z. will be adopted uni versally.
It should be fairly easy to produce a machine with a speed correct to within 5\% with a crude mechanical governor can meet 5% regulation of speed, so why not a simple cassette drive?

Paris
 components show
 from Martin Eccles in Paris

France's foremost electronics exhibition - Salon International des Composants Electroniques - this year attracted over 1700 exhibitors representing 31 different countries. Held for the last time at
Paris's Parc des Expositions, the 25th annual Paris Components Show, despite slight increases in the number of visitors from outside France and the total number of exhibitors, saw a fall in attendance. According to the French
Trade Exhibitions office in London, there were just over 85700 visitors, as opposed to last year, when 95124 permanent passes were issued. But considering current economic restraints, the figures are still quite impressive.
In 1983, the show is to be held in No-
vember, instead of early April as has been the tradition, at the North Paris Exhibition Grounds, and after that become biennial to alternate with the exhibition will be held at the North Paris site each even year.

Surprisingly, perhaps, the current 'world's feen developed in France and is, initially at least, to be manufactured there. Access

By far the majority of contemporary exhibition stands consist for the main pad nooks often formed by zig-zagged partitions, the most effective of which are erected diagonally across the podium. Often, traders without visitors will step away from hies stand waing for an unsuspecting fly to be attracted into one of these embryonic iches and, woe. This how is no exception, but as it is so large, one can still find many of the more mo
is 55 ns (maximum) and its power consumption is $500 \mu \mathrm{~W}$ in standby mode or 30 mW while enabled. This device is the outcome of joint efforts by Harris and the
exhibitors, Matra Harris, who were also showing the HD6409, a c.m.o.s. Manchester II encoder/decoder for full duplex operation up to $1 \mathrm{Mbit} / \mathrm{s}$, the MA1200 30 MHz gate array with 1200 gates each with a propagation-delay time of between 2 and
4ns, and the HM8048 microcontroller together with its c.m.o.s. counterpart. WW 301

Oriental Motors are contemplating distriOriental their products in the UK, possibly by the end of the year. When asked why their motors might be bought in the UK in preference to similar products from other manufacturers, the representative replied tively priced. The company's stepping motors, part of a large range of induction, reversible, synchronous, geared and fan motors, have a step angle of 1.8° and are
designed for a -10 to $+50^{\circ} \mathrm{C}$ designed for a -10 to $+50^{\circ} \mathrm{C}$ operating-
temperature range. Direct-voltage ratings of the 19 motors range from 1.8 to 24 V and current-per-phase ratings range from 0.2 to 4.5A. Maximum and minimum volta-

 d of the price scale, Colvern had microcomputer with colour graphics dapted for computer-aided design ontheir stand. The company isn't moving into this area though - they only manufacture the 3 -axis controller used. BitstikApple graphics, as the system is called, is product of Robocom and can be supplied
as a basic conversion kit for existing Apples, with or without colour facilities, or alternatively as a complete system with various options for hard-copy, etc. The kit, priced at around $£ 187$, comprises the previously mentioned controler (which in
actually a joystick, but not to be confused with a games paddle) design-aid software on disc and a manual. As this is a general purpose design aid intended for compiling anything from artistic to architectural
drawings, component 'library' software for rrawings, component dercuit board design is to be available as an option. One feature of this WIRELESS WORLD JUNE 1982

system is that a single picture element may be zoomed in on to fill the whole screen, i.e., a single master page may be broken
down into 16000 pages. This means that information, such as an op-amp's parameters, may be stored in a small area which is invisible on the overall view.
WW 304
Numerous photographs of disc-drive heads initially attracted us to this company's stand. On glancing at the brochures here, we found that Paris's Samson Data, and their Belgian counterpart, Samson
Computer Supplies, represent Information Magnetics Corporation, an American company offering a hard-disc head refurbishing service. They also supply numerous professional computer and computer-related appliances, such as disc packs,
read/write heads, magnetic tapes, alignment discs and anti-glare filters for v.d.us. Occasionally at such exhibitions we meet people who hear the name Wireless World for the first time and respond cau-
tiously, and probably in their eyes tactfully, with "I don't think we have anything that will be of interest to your readers." To explain the evolution and current scope of the magazine is time consuming so we usually take one or two issues along to
keep initiation discussions brief. A genial M. Samson hadn't heard of us and on seeing our only two issues decided to keep them, despite our insisting that we wanted them back. We thought at first that he had simply become accustomed to people
handing out free magazines but after a brief rapport realized that he was serious. Finally, M. Samsoh won, after fruitlessly offering a cheque or cash and the promise of a subscription in exchange for the two magazines, by tendering a slightly imper-
fect disc-drive carriage fitted with 13 heads - an offer we couldn't refuse.

WW 305

Caesium frequency standards are not uncommon nowadays. Besides their more $\mathrm{ab}{ }^{-}$ vious uses in national time services, metrological applications and power stations,
they are also used for a number of scien ${ }^{2}$ tific and industrial purposes and in dataWIRELESS WORLD JUNE 1982
transmission systems, satellite ground staions and observatories. In outline, the Consultative Committee (CCITT) tecommends that international digital links should be synchronized with a frequency error of less than 1×10^{-11} : the only practical way of achieving this accuracy is Oscilloquartz was showing part of its range of caesium standards and systems alongside its more conventional quartz crystals, Theillator units and frequency references. The 3000 is an uncased caesium oscillator with frequency and long-term stability er-
ors of $\pm 7 \times 10^{-12}$ and $\pm 3 \times 10^{-12}$ respectively, intended as a module for use by

equipment manufacturers. It gives a $1 V$ r.m.s. sine-wave output at 5 MHz . Model 3120 incorporates the 300 oscillator and
gives sine-waves of 1,5 and 10 MHz with gives sine-waves of 1,5 and 10 MHz with
the same accuracy. This cased instrument the same accuracy. This cased instrument
is fitted with a 6 -digit clock, control and monitoring facilities, output buffers, batteries and p.s.u. It measures 131 by 428 by 546 mm and is suitable for rack mounting. The company can also provide complete
systems for all the applications mentioned systems for all the applications mentioned
above and a number of accessories are available for the standards mentioned.
WW 306
Of course, the more familiar faces were also at the exhibition. Philips were exhibiting quite a number of recent and new
products, antong them a dual clock analyser/35MHz oscilloscope. The PM 3543 , 10 MHz logic-state analyser has disa日, sembly faellites for 16 -bit microproces-
sors, including the $Z 8001 / 2$ and 8086 , and sors, including the $28001 / 2$ and 8086 , and
for 8 -bit devices from a number of manu* facturers. Because of the dual clock; multiplexed-bus data and address lines may be separated so up to 16 data bits and
ment can be used as a 35 MHz oscilloscope to aid fault location. An IEEE-bus interace is avaiable as an option. Among
other new products shown by Philips were two 75 MHz lightweight service oscilloscopes, one with a single timebase and the
other dual, and an audio-distortion meter for measurements to DIN standards. WW 307
Two types of liquid-crystal display with 129 mm -high characters, one with seven
segments and the other with a 6 -by- 7 dot matrix, have been produced by Fairchild's optoelectronics division. Measuring 165 by 110 mm , these displays require typically take either 45 and 130 ms or 80 and 150 ms to turn on and off respectively, depending on the type-number suffix. Seven-segment types. are disignated LTR1341 and dotmatrix types LTR1401.
WW 308
In addition to a number of new semiconductors, RCA were illustrating the advantages of their colour-enhanced de-
velopment system for 1802 c.m.o.s. velopment system for
microprocessor products. "Colour",' say microprocessor products. "Colour", say
the company, "not only enhances the display, but also simplifies and speeds up screen editing." Fairly obvious, we
thought, but that doesn't detract from the thought, but that doesn't detract from the
usefulness of the system. Floating-point usefulness of the system. Floating-point
Basic is held in part of a 30 K r.o.m., as is Basic is held in part of a
assembling, editing and monitoring software. A further 5 K r.a.m. is included, leaving 29 K free memory area for expan-
sion, and permanent storage is possible using one of two cassettes. Any ised with the system. The semiconductors mentioned earlier are firstly; two 4 MHz microprocessors, similar in architecture to
the 1802 but with 113 instructions as opthe 1802 but with 113 instructions as op-
posed to the 02 's 91 , one with 64 bytes of a.m., the 1805, and one without, the r.a.m., the 1805, and one without, the
1806. Secondly, an 8 -bit flash a-to-d converter for sampling speeds up to
15 MHz with 150 mW power consumption, nd a range of N-channel power ent ratings from 1 to 18 A and voltage atings from 80 to 450 V were mentioned. The converter i.c. is the CA3308, and the power f.e.ts are RCA91XX and 92XX de-
vices. vices.
WW 309

DIGITAL STORAGE OSCILLOSCOPE
 channel, are used in Gould's 4500 storage oscilloscope. Shown for the
first time in the UK at the All
Electronics Show, this instrument Electronics Show, this instrument
can be used to store and display 'single-shot' or repetitive
waveforms and is suitable for bench Waverorms and is whil be operated by
usean when it with
means of its front panel controls, or as part of a test system under GPIB control. It can resolve 5.1 bits at
35 MHz , introduces a maximum 35MHz, introduces a maximum
absolute voltage error of $\pm 6.6 \% \mathrm{f} . \mathrm{f}$.
over the recorded range and, after over the recordded rarge and, after
4ons, responds to transients with a 40ns, responds to transients with a
relative error of $\pm 0.4 \%$ Setting up relative error of $\pm 0.4 \%$ Setting up
of the front panel is aided by
on software-generated menus
displayed on the screen; once displayed on the screen; once a
seting has been made, it may bestored for later use or comparison.
With these menus, the operator can With these menus, the operator can
select control functions for signal select control functions for signal
averaging, cursor positioning, trigger source and filtering options and plotter digital interface opemparisons of reference and acquired waveforms are possible.
For waveform comparisons, the 4500 has a $\begin{aligned} & 4 \mathrm{Kbyte} \\ & \text { memory } \\ & \text { and } \\ & \text { for }\end{aligned}$ refernce
acquired waveforms, a 1 Kbyte per channel
(or 2Kbyte in single-channel mode) memory. A floppy disc will be
available for storing up to
30 waveforms for later use either with
the oscilloscope or with an external the oscilloscope or with an external
computer/controller. The 4500 's price is around $£ 11,500$, and it can be obtained from Gould Instruments Ltd, Roebuck Rd,
Hainault, Ilford, Essex IG6 3UE. Hainault
wW310
GPIB COMPONENTS SERVICE Accessories and components
specifically for general-purpose inspecincally
terface buses are averalal-purpe fromem one
sone source. With prior knowledge of
the problems involved in designing GPIB's, Wasec have formed a service offering a range of bus

ww310

 tors, studs, cables, adapters, specifications and other data pertaining
to these buses for enthusiasts, manufacturers and designers alike. manuacturers and designers alike.
A leaflet describing the service is available on request. Wasece, 45
Hurstcourt Rd, Sutton, Surrey, Hurstcourt Rd, Sutton, Surrey,
SM1 3 F . ww311

SMALL FIBREOPTIC LINK
This 0 to 5 Mbaud fibre-optic link with very small emitter and detec-
tor elements can be used to tor elements can be used to to 1200 m . Transmitter and receiver

units of Hewlet-Packard's HFBR0200 measure 7.8 mm high, includ-
ing shielding and connectors, and function at temperatures within the
range -20 to $+85^{\circ} \mathrm{C}$. The receiver range -20 to $+85^{\circ} \mathrm{C}$. The receiver
i.c. has an optically transparent, yet
electrically conductive, shield to improve its immunity, so electro-
magnetic interference and ente magnetic interference and electro-
static discharge; the receiver also has a logic-compatible output. Sus. pended sapphire-ball lenses opti
cally connect emitter and detecto cally connect emitter and detecto
i.cs with the cable, withou mechanical contact. These lenses also make connector alignmen
also
problems less critical A kit, includ problems. less critical. Ake, includ ing cransmister, receiver, mouncing
hardware and 10 metres of cable
costs $£ 104.60$ if costs $£ 104.60$ if less than ten are
bought. Hewlett-Packard Ltd King Street Lane, Winnersh, Wo King Street Lane, Winnersh,
kingham, Berks RG11 5AR. WW312
MICROCOMPUTER FOR EDUCATION AND CONTROL Some 12Kbytes of Basic tailored for
control applications is a feature that Midwich Computer Co. hope will bring their MC system into
educational educational establishments and
laboratories. If a a separate board laboratories. If a separate board,
called an experimental unit, is
connected to. the z80-based connected to the Z80-based
computer, combinations of an computer, combinations of an
analogue-input board, analogue-

output board and digitalwith the system to merform many	with the system to perform many
complex	
control	
applications	simply. The computer has

hakbtes 16Kbytes of r.a.m., a 300 or 1200
baud RS232 interface and a 300 or
1200 L200, baud cassette-recordder
interface with motor switch. interface with motor switch.
Binary, octal, decimal and
hearecen and hexadecimal numbers can be
handled by the interpreter, which also has facilities for simplifying
altern
communications beween Rasic and communications between Basic and
machine-code routines, and real-machine-code routines, and real-
time interrupt handling and nested
scheduling facilitis. time interrupt handling and nested
scheduling facilities. A machine-
code monitor is included. Prices
are, $£ 375$ for the Microcontroller are, $£ 375$ for $\begin{aligned} & \text { the Microcontroller } \\ & \text { computer, } \\ & \text { £145 for }\end{aligned}$ the computer, $£ 145$ for the
experimental unit, $£ 55$ and $£ 35$
ens. experimenal
respectively for analogue input and
output boards and 555 for a digital putput boards and $£ 55$ for a digital
io board. Discounts on the computer. $\begin{aligned} & \text { Discounts on the are avaiable for } \\ & \text { educational } \\ & \text { establishments. }\end{aligned}$ educational establishments.
Midwich Computer Company Midwich Computer Company
Limited, Hewitt House, Northgate Street, Bury St Edmunds, Suffolk $\underset{\text { WW3313 }}{\text { IP33 }}$

ww3is
FLAT-CABLE
CLAMP
A two-part plastic assembly for clamping flat cables is availabrap
from Winslow. The Ribbon Wrap can hold up to eight, 0.89 mm -thick
flat cables and is obtainable in three flat cables and is obtainable in thre
widths, for 26,40 or 64 -core ribwidths, for 26, 40 or 64 -core erib
bons. Rivets, bolts, screws or sel adhesive pads may be used to se cure the base-plate section. Two
ratchet-type lugs on the base plate ratchet-type lugs on the base plate
hold the clamping section in place Winslow International, 71 Tunn Road, Tunbridge Wells, Kent TN
2BX $\underset{\text { WW314 }}{\text { 2BX. }}$

Proressional readers are
invited to request further deinvitad to request further de-
tails on items foatured here
by entering the aporopriate WW reforence number(s) on
the mauve replypaid the mauve reply-paid card.

WIRELESS WORLD JUNE 1982

ELECTRONALUE
SASPECHAL $\{\operatorname{SUMMER}\}$ ELEGTODALUE

FREE UOUCHERS TOSMUE YOUUPTO

+ USUAL DISCOUNTS + FREE POSTAGE

 ont most catalogue items but
not on payments by creait
natr

 ELECTROVALUE LTD

Available from stock NOW: 1.0 FARAD 1.0FARAD 1.0 FARAD SUPERCAP SUPERCAP SUPERCAP
 $\frac{\begin{array}{c}\text { C.MOS } \\ \text { R.A.M. }\end{array}}{\text { 1MONHH }} \frac{\begin{array}{c}\text { Programmable } \\ \text { Tuner Chip }\end{array}}{1 \text { WEEK }} \frac{\begin{array}{c}\text { C.MOS } \\ \text { Microcomputer }\end{array}}{\text { 1DAY }}$ A/C Only part of the
Anglia range of VFC componen
Burdett Road, Wisbech Cambs, PE13 2PS Telephone 09456328 COMPONENTS THE PARTS YOU NEED

- 24, 28 and 40 Way ZeroInsertion Force Sockets
- Beryllium-copper "side wipe" contacts actuated by end lever
- High temperature ($+150^{\circ} \mathrm{C}$), solvent resistant mouldings
- Can be used for programming, test, or burn-in
- Made in the U.K. by:

HARWIN

Harwin Engineers SA,
Fitzherbert Road, Farlington,
Portsmouth, PO6 1RT, Hants.
Tel: (0705) 370451 Telex 86125

[^0]U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

- Fast location of shorted, open and leaky components
- Test diodes, transistors, LEDs, electrolytics, FETs, MOS and CMOS etc.
PLUS..
- Full function, dual trace, 12 MHz oscilloscope
- Fine sweep and gain controls
- Differential measurement mode-essential for effective servicing of disc drives and tape recorders

A really versatile 'scope for the test, service or development engineer.

Details from:

FARNELL INSTRUMENTS LIMITED WETHERBY LS22 4DH•TEL.(0937)61961 or TEL. (05827) 66123 (Southern Office)

Also Military Radio Types
PRC 25 : PRC77 : VRC12 : VRC240
Look at these examples:

ww - 059 FOR FURTHER DETALLS

RF Communications Spares

Transistors • Antenna - Batteries - Tubes
Lowest Cost - Highest Quality Spares for

RADIO COMPONENT SPECIALISTS

BAKER 150 WATT MIXER/POWER

 AMPLIFIER $£ 89$ Poste? SLAVE VERSION $£ 75$

 BAKER £69
50 WATT
AMPLIFIER

 H/B of Semiconductor and Bubbile Memories by W. A. Triebe. 19.70
E 19.70 Practical Techniques of Electronic Circuit Design by
By ${ }^{\ddagger}$ 保 Bonemerak
Digitat I Ite egrate Electronics b H . Taub

\star PRICES INCLUDE POSTAGE \& PACKING \star THE MODERN BOOK CO

Bestseler - comprenensive teanhing and referenene book or Commodoress 2000 , 4000 and 8000
 micro anmputers and

minerocom
peripheals

 Send...... copyries of Progitamming the PETCBM at E14.90 (post tree)

Ienclose
incen
ADDRESS

ADDRESS....
${ }_{9}$

LOW PROFILE

 KEYBOARDS16 switch (4×4). Phos./Bronze gold-plated contacts. Keytop legends $0-9$ plus 6 plain.
G.F.P.C. Board with edge connections. G.F.P.C. Board with edge connections.
Overall switch height from board 12 Overall switch height from board 12.5 mm . Switch pad area 65 mm . sq. approx.
PRICE $£ 7$ plus postage and VAT.
Cheques for $£ 9.20$ payable to:
AVONSWITCH PRODUCTS LTD.
River Street, Pewsey, Wiltshire SN9 5DH Delivery within 14 days
wW - 060 FOR FURTHER DETALIS

THE CNHEC
 SIIUSOIDAL FREQUEICY
 AND VOLTAGE STABHLIEER

APPLICATIONS *SOUNDRECORDING * VDEORIECORDING * MEDCal

* MARILS
* computizs

NAMOATOHAL SYSTEMS

SPECIFICATION

The CINTEC FREQUENCY \& VOLTAGE STABILIIER pravides
the answer to both these problems

* 500VA OR 250VA
* SOLID STATE
* HIGH STABILITY
* ROBUST
* VERSATILITY
* RELIABILITY
* SINUSOIDAL

Reliable Frequency \& Voltage Stabilization The efficient operation of sophisticated electrical and electronic equipment is, in many cases, de pendent upon an electrical supply which is stable in both frequency and voltage.
In many countries and even in the United Kingdom during periods of frequency and voltage is sufficient to introduce errors and the malfunction of such items as Recording equip ment etc. Likewise, in certain areas the only source of supply is from a
Generator, the output of which can vary considerably when different oads are imposed. This has precluded the use of a wide range of equipment in many countries able, but these do not stabilize the frequency of the supply which, in many instances, is essential.
WIRELESS WORLD JUNE 1982 ww - 056 FOR FURTHER DETALLS

946177 Details Specification and Brochure-Available Post Coupon or Telephone/Telex

CINTEC LTD

PORTABLE MAINS FILTER

This portable mains interference filter has been developed to provide good attenuation against both incoming and outgoing interference. The filter unit is rated conservatively at 13 amps and incorporates an earth line choke and ZNR for full protection against mains transients as well as R.F.I.
The capacitors to earth meet the BS 613 limits for portable equipment. A discharge resistor is provided portable equipment. A discharge resistor is provided The filter is suitable for a wide variety of uses including the protection of VDU, desk top computers, EPROM programmers and microprocessor development systems, as well as the usual range of digital and analogue instruments.
Roxburgh Suppressors also manufacture a standard range of mains filters for general purpose applications and offer RFI laboratory facilities for custom built suppression
$£ 42.49$ inclusive of VAT and carriage.
ROXBURGH SUPPRESSORS LTD.

EAGLE ROAD, RYE, EAST SUSSEX
TELEPHONE RYECO79 731 3725

WIRELESS WORLD JUNE 1982

The Infinite Choice.
Enclosures, desks, cabinets, boxes and accessories whatever your needs, the choice is enormous - available ex stock from Luton and through our 52 national distributors. In all shapes - from the big ' H ' Range of adaptable enclosures to front and top opening control desks.
In all sizes - from the smallest electronic assembly box to the giant monobloc 18000 Series $(2100 \times 1200 \times 400 \mathrm{~mm})$. In all finishes - watertight steel, corrosion resistant plastic and tough glass fibre reinforced polyester.
Whatever your choice, our highly trained sales staff can offer a total service.
reliable delivery, at the right price - to the
It'll pay you to choose Sarel, we have some great specia net price quotations on large orders - phone now on Luton 20122 or clip the coupo for comprehensive, fact-packe atalogue and price list.

II Sarel - the infinite choice for enclosures. Think big - think Sarel
Sarel Electric Limited grove Way, Luton, Beds. Tel: Luton 20122 lam very interested WW - 006 FOR FURTHER DETAILS

.

USE READER CARD FOR DETAILS
WW - 047 FOR FURTHER DETAILS

B.C.M., Box 8085, London WC1N 3XX. Tel. 0494714483 mall order bargains All prices include VAT and Postage - Same-day despatch CYCLON POWER PACKS. Chloride CYCLON power batteries deliver the same power as a car battery, at a fraction of the size/weight, but are an ordinary car charger. Extremely rugged and virtually everlasting, these bateries are usually used on expensive aircraft systems. Two in series make ideal heavy duty supply for mobile 12-volt systems. Rated 6 v series make ideal heavy duty supply for mobile 1 -volt systems. Rated at a 25 AH. Brand new, straight from USA, and not out of date not quarter of list price .. 20 amps. (BRAND NEW). These little pocket size modules weigh less than 4lbs. but deliver full 20 amps at 5 v . Add a pot to make variable $0-6 \mathrm{v}$, or connect in series for higher voltages. 0.1% Regulation and full over V/I protection. List price $£ 250+\ldots . ~ O u r ~ p r i c e ~$ $£ 40.25$ PROTOTYPE PC CARDS. Over 200 Common ICs (most 7400 series) in wire wrap sockets on useful wire-wrap cards. ICs/Sockets easily removed- no VIDEO MONITORS 9-INCH. Standard Composite Video in. 240v PSU Excellent definition - ideal for micro. Complete with service manual and ASCII KEYBOARDS. Top quality 84 -key ASCII with all U/L Case and Control codes in case .. E 44.50 POWER SUPPLIES 5 v 3 3mp. Standard Mains Input - out 5 v 3 a fully regulated and protected...$~$ $\mathbf{1} 11.50$ EPROMS-TMS 2518. Brand new - these usually cost around $£ 3$ to $£ 5$ each.. Our price $£ 13.80$ for 10 MODEM PROTECTION BOXES RS232. Completely isolate your valuable system from over voltage - consists of 2 RS232 Cannon Connectors, one on long lead, and neat aluminium box with 16 Zener diodes and fuses. If WE STOCK COMPLETE RANGE OF DEC SYSTEMS FROM PDPEE TO PDP11/0 AND VAX FOR MORE DETAILS TELEPHONE NIGEL DUNN ON 0494 714483, ANY TIME For regular copies of our catalogue please send postcard with address

B. BAMBER ELECTRONICS

GOOD SECONDHAND EQUIPMENT
ALWAYS WANTED FOR CASH
5 STATION ROAD HTHLEPORI, CAMBS CB6 10E PHOXㄹ: 다 (0353) 860185
ww - 071 FOR FURTHER DETAILS

Electricity Supply Handloook

 - Your Guide to the Industry:An up-to-date copy of the Electricity Supply Handbook is the besi reference
for knowing who s who and wh

* Over 2,000 names and locations of executive personnel in the Electricity Council, C.E.G.B., A rea Boards and other organisations.
* Major authorities, government departments associated with the
electrical industry.
an for total coverage, detail and accuracy, it alwaws sells out fass
so make sure of your cow

[^1]* U.K. power stations, Area Board statistics, electricity tarifis, electrical associations.
* Pull out map of C.E.G.B. regions power stations and transmission lines.
* Bound in maps of Area Boards.

ITsT

Quoted ExCLUDE PII

LINSLEY-HOOD CASSETTE RECORDER

PRACTICAL WIRELESS 'WINTON' TUNER

rices breakdowns.
Instant easy ordering, telephone your
requirements and credit card number to us' on Oswestry (0691) 2894

INSTANT PRINTED CIRCUITS!!

 Copper-clad Fibre-glass Boards: $\begin{gathered}\text { Single-sidided..................2f. sq. (} 45 \mathrm{p} \text { p) } \\ \text { Double-sided }\end{gathered}$

\qquad
WHITE HOUSE ELECTRONICS
Telephone: Germoe (073-676) 2329

LINSLEY HOOD 300 SERIES AMPUEIERS

FEED YOUR MICRO BYTES WITH OUR
SOLENOID CONTROLLED CASSETTE DEC

HART TRIPLE-PURPOSE TEST CASSETTE TC1

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive
range of equipment tor processing all types of picture tubes colour and mono Standard or custom- built oniturs ofr estab
lished or new businesses. We export worddwide and have lished or new businesses. We export world-wide and have an
.excellent spares service backed by a strong techical team. Full training courses äre individually tailorea to customers $\underset{\substack{\text { Full trianing } \\ \text { requirements. }}}{ }$
ror full details of our service contact Neil Juipp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2 XX WW - 040 FOR FURTHER DETAILS

Happy Memories

ERASERS ${ }^{\text {튰 }}$ DEVELOPMENT LAB UV1B Powertul, compac
unit trocean up to six
EPRMS
 and safely (illus-
trated ${ }_{\text {rated }}{ }_{\text {E46.95 }}$ + VAT UV1T
 CARRIAGE PAID (U.K.) IN USE IN DESIGN ESTABLISHMENTS
AROUND THE WORLD

 WIRELESS WORLD JUNE 1982

thandar's
 COMPLETE PORTABLE TEST BENCH

LCD HAND HELD MULTIMETERS
TM354 3 $1 / 2$ Digit

TM 352 3 $1 / 2$ Digit

LCD BENCH MULTIMETERS
TM351 3122 Digit TM353 31⁄2 Digit

LED MULTIMETERS
DM235 31/2 Digit
DM350 31/2 Digit

FREQUENCY METERS
TF040 8-Digit LCD

TF200 8-Digit LCD

TP600 600MHz Prescal
 PFM200A 8-Digit
LED Hand Held Mete

 omono ina
buar
varacily anall 0
\qquad

TG105 5MHz Pulse Generator

PULSE \& FUNCTION GENERATORS TG 100 100kHz TG 1002 M 10 kzz
Function Generators Function Generators

Ihanare Eleever

Sameson's 9 \& 10 CHAPEL STREET, LONDON, NW1 11-723 7851 OD $01-2625125$ ADJACENT TO EDGWARE ROAD MET. LINESTATON			
ADJACENT TO EDGWARE ROAD MET. LINE STATION PLEASE ADD 15% TO ALL ORDERS INC. CARA.			

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: O1-488 $3316 / 8$

FIRST IN THE WORLD
The ICM-12, synthesized, marine hand-portable radio
features:
12 channels -6 and 16 fitted as standard. No waiting for crystals, can be diode pro-
grammed between 156-164MH. grammed between $156-164 \mathrm{MHz}$.
Automatic semi-duplex for private and link calls.
Slide-on

- Sir

Lots of or marges from mains

- Lots of options, speaker mics, alternative
battery packs, 12 V leads, and desk charg-
- ers. $\begin{aligned} & \text { Complete with nicad battery pack, mains } \\ & \text { charger, belt clip, earphone, rubber }\end{aligned}$ antenna. - Home Office type approved. RTD HP 105 . ${ }^{\text {PRICE } £ 199.13+\text { VAT. Free carriage. }}$. Also IC-M25D 25W, synthesized 25 channel
VFF marine transceiver $£ 207.83+$ VAT. Trade enquiries very welcome - Ask for Phi
 We can also supply
the ICOM IC 100 E
High Pase and Mobile transceivers. Fully approved,
very compact, built--in
CTCSS and at very very compact, built-1n
cTCSS and at very
competitive prices Dealer outlets re
quired, ask for Dave
Stockley.
Thanet Electronics ICOM 143 Reculver food Herne byy Kent

Who takes care of your EPROMS?

 WE DO!OLLED EPROM PROGRAMMER
Qualified by INTEL and new to the UK. home market,
Velleman UK. are offering you their K2578 EPROM programmer This compact unit is complet with the power supply and available assembled or in kit form. The K2578 will test, verify, copy and programme the
following EPROMS with No need for any other personality module - 2716 (Intel or equivalent) - 2732 (Intel or equivalent - 2732A (HMOS version of Intel) and TMS2516 (Texas Instruments). Ideal for industry, repair shops, schools or the home enthusiast, the 25 , development system.

UNCTIONS

- blank test
- program with automatic blank and - input or modify data in user RAM at any desired address
- load RAM function to fill the RAM
area with data fon
area with data from a a preprogrammed
PROM to perform a copy - Parallel load capabaility from a DMA controlled RAM field
cinom a -size selection $(16 / 32 \mathrm{~K})$ with single
push-button OK indication for successful executed
functions - ERROR indication with error codes on display
-blank error - varify error - illegal address access error input data via hiex. keyboroard and jumps
to the next address in input data via hex. Keyboard and
to the next address in user RAM
-reset
CONTROLS
- 24 key pad includes hexadecima
- 12 address LEED's.
- atfunction LED's arrror, prog, o
and size).
- 2 hexadecimal displays.

SPECIAL OFFER
Assembled $£ 270.00$
Kit Form $£ 180.00$
Prices exclude

VELLEMAN UK. LTD

P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL Telephone: Hastings (0424) 753246 .

EV88 - A low-cost evaluation system for the 8088 microprocessor

EV88 is a single board microcomputer that is ideal for
evaluating the 80888 -bit/16-bit microprocessor. EV88 can evaluating the 80888 -bit $/ 16$-bit microprocessor. EV88 can
also be used as a powerful controller, and, with a suitable cross-assembler rumning on a standard microcomputer, and
an ERROM programmer, for low-cost development of 8088 an EPROM progra
based systems.
EV88 is supplied fully assembled and tested, with comprehensive documentation, and a copy of The 8086 Book, by
Rector and Alexy. All you need is a $5 V 1 \mathrm{~A}$ power supply and a terminal or a suitable microcomputer
$\star 8088$ microprocessor in minimum mode
\star Comprehensive.
2KCMOSRAM.
\star Cassette interface.
\star
\star
Eight levels of interrupt.
RS-232
compatible serial interface (
I
*Three-channel counter/timer
Buffered data, address and control lines.
丸 On-board expansion to 16K EPROM/RAM (sockets pro-

- vided). Breadboarding area.

丸 Breadboarding area.
Single 5V supply.
Price $£ 300$ plus VAT. Includes delivery.
$8088 / 8086$ design service available (software and hardware).

FH Associates Ltd
 40A High Street Stony tratord
 Milton Kerynes (0908) 566660

WIRELESS WORLD JUNE 1982

WW - 092 FOR FURTHER DETALLS

BRITAIN'S BETTER BARGAIN STILL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit specia needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing
$\begin{array}{lll}\text { amplifiers - measurement and detection } & \text { 19. Monostable circuits } \\ 20 & \text { Transistor pairs } & 21 \text { Voltage-to.-frequency converters }\end{array}$
 multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 135 Analogue gate applications -2

- - - - - - - - - - - - - - - - - -

To IPC Electrical - Electro
General Sales Department
Room 205,
Quadrant House
Sutton, ${ }^{\text {Surrey }}$ SM2 5AS

Company registration in England Quadrant Suadrant House, The Qua Sutton, Surrey SM2 5 AS Reg No 677128

Please send me the following sets of Circards
$£ 18$ for 10 post free
Remittance enclosed Name (Please print)

Address (Please print)

Appointments

Advertisements accepted up 12 noon
Monday, May 31 , for July issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable.)
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box Number in the BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box advertisement, c/o Quadrant House,
PHONE: IAN FAUX, $01-661$ (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

RF DESIGNER

NITH INVENTIVE FLAIR AND

A TASTE FOR RURAL LIFE
Our clients are a small cheerful and highly motivated company who are sole manufacturThey are in the throes of moving to a G
rural England (with low housing costs).

有 The need is for an engineer, probably between 25 and 45 , with a genuinely radical and
inventive approach to design and a sound knowledge gained in the radio frequency invenive appreat low power) field.
(ideally,
The successful candidate will work in a small specialist team. The potential and prospects
attached to the position are second to none. attached to the position are second to none.
Apart from a competitive, negotiable salary, the company offer excellent relocation ex
penses to this attractive low cost housing area. po discuss this position or any other specialist Communications vacancies we may have
Telephone Paal telephone Paul Hecquet on $0444647301 / 2 / 3 / 4$ or write with a brief C.V.

The Electronics Recruitment Company 18 Station Road, Burgess Hill, West Sussex RH15.9DE

Electronics, Medicine and $£ 12,000$ p.a. Tax Free Where's the Connection?

Allied Medical group are the British consultants to the Rivadh Al-Kharj health care programme in Saudi Arabia. The two hospita
superbly equipped, and mainly UK staffed.
ophisticated electronic systems and equipment feature prominently in the hospitals. The electronics laboratory and mechanical workshop look after all aspects of maintenance,
repair, test and calibration. There is a wide variety of equipment and the facilities are
You will need an HNC (or equivalent) or should be taking the examinations this year, and
oxperience in maintenance and testing is required though not necessarily in the medical
As well as the tax--rree salary we have already quoted, , If you're interested, quote Ref. RKH 426, to: Malcolm Craig, Senior Personnel
 Alternatively, call our 24 -hour answering service on 01-730 5339, quoting the
reference number.

Allied Medical Group
ALLIED MEDICAL GROUP - The Best of British Health Care in the Middle East.

IF YOU SEEK DEEISN
SOFIWARE SOFTWARE ${ }^{\text {TTSTST }}$ FIELDSERVIICE SYIETEMS
APPLICATIONS SALES

COMMISSIONING APPOINTMENT
to work with IICROPROCESSOR MEDICAL HF/UHFNHF MICROWAVE SATCOM MINI COMPUTER MAINFRAME SIMULATION IMAGE PROCESSING VIDEO WEAPON SYSTEMS or AUTOMATIC TEST EQUIPMENT
and EARN
£7000-£20000 then CONTACT
ELECTRONIC COMPUTE MANAGEMENT APPOINTMENTS 148150 High Street
Barkway, Royston

Appointments

TV STUDIO

PROJECT ENGINEERS

Due to the continuing expansion of the Projects Department we are looking for Project Engineers. If you have had experience in television broadcasting either as a project engineer or in the operational
side of broadcasting we would like to hear you. design and build outside broadcast vehicles and studios for television broadcasters throughout the world.

SALES SUPPORT ENGINEER

 (TV COLOUR CAMERAS)Our Sales Support engineering activities include ustomer demonstrations, both here in Andover and away from base, supervising acceptance, test and after-sales activities. If you have worked in knowledge of modern colour television cameras we would like to hear from you.
Both positions involve occasional overseas travel. or further information please contact our Perphone on Andover (0264) 61345.

LINK

ELECTRONICS

EDITOR WANTED

REOUIRED: A RADIO AMATEUR WHO CAN COMMUNICATE

We are looking to expand our current team of editors with someone who can communicate deally be a licensed amateur and have some journalistic experience. ASP is a rapidly expanding specialist publishing company and this vacancy offers the opportu-
nity to join us in a senior position. A keen innity to join us in a senior position. A keen in-
terest is required as is the ability to write clearly and authoritatively.
Salary is negotiable, but will reflect the seniority of the position. Applicants should write, enclosing full $c . v .$, to:
R. Harris

ARGUS SPECIALIST PUBLICATIONS LTD 145 Charing Cross Road

Argus Specialist Publications Ltd.

 145 Charing Cross Road, London WC2H OEE. Tel. (101) 477-1002. Telex 8811189 a
ELECLROSONIC

We are a leading company in audio-visual, lighting control, and communication systems. In order to maintain its technological lead the company now
seeks to strengthen its team of engineering professionals through the appointment of a

SENIOR ELECTRONIC DESIGN ENGINEER

to $£ 9,500$ per annum
To become a member of a small team responsible for innovation and development of new microprocessor based products; the ideal candidate will be qualified to degree level and have at least 2 years design experience, although a thorough
knowledge of digital/microprocessor hardware and software design is necessary, a broad-based background in analogue design would be considered a distinct advantage.

The position carries excellent employment conditions.

Please write or telephone for an application form: Peter Smith - Design Manager Electrosonic Limited
815 Woolwich Roa
London, SE7 8LT
Telephone: 01-855 1101

THE OPEN UNVERSITY
FACULTIES OF TECHHO
FACULIES OF TECHNOLOGY
ANO SCIENCE
ELECTRONICS COMMON FACILITY

ASSISTANT
 ELECTRONICS DESIGNER

signer, to work under the Senior Design Engineer on
wide wide variety of work in the interfaculty Electronics Com
mon Facility The design work will involve both digital and analogue
circuitry and will The work will appeal to someociated software. The work will appeal to someone with a keen. interest in
electronics, who is eager to learn new techniques and who should already have some experience in working, at
least on a small scale, to his/her own designs or modificaleast on a small scale, to his/her own designs or modifica
tions of other designs.
Oualification Qualifications: Minimum equivalent to TEC, C\&G or ONC
backed up by proven experience. Experience will be the masked up by proven experience. Experience will be the
most important factor in determining the successful ap. Thicant. salary for this post will be on the $T 5$ scale $£ 5695$ -
£6650 Application forms and further particulars are available The Open UUiversity, Waltoon Hall, Milton Keynes MK7
6AA, or telephone Milton SAA, or telephone Milton K Keynes, (O998) 653941 - there
is a 24 -hour answering service on 553868 . Closing date for applications:

Appointments

SIEMENS

Make better use of your electronics experience

As a medical service engineer

Siemens has always been in the forefront of medical engineering and our
products are helping doctors in hospitals all over the world to save lives. But the equipment on its own is not sufficient.
We also need men and women with sound electronics experience to strengthen our service team based at Sunburi. You will visit hospitals throughout London and the South East installing and servicing
equipment to ensure optimum perfo mance for our customers. Currently we require an engineer to work with electro-medical products. You should be able to bring ONC/HNC level qualifications and at least 3 eears' exxperience, working in the ho spital environment and live or be
prapared to live within an, approximate 30 mile radius of Sunbury. prepared to live within an.approximate 30 mile radius of Sunbury.
A car or car allowance will be provicied, and a full range of excellent benefits A car or car allowance will be provicied, and a full range of excellent benefits including non-contribut ryy pension scheme, first-class sick pay, generous
daily allowances for time spent away from your base and a competitive salary daily allowances for time spent awa'" from your base ats. Tel. Sunbury 85691 or write to her for a corrprehensive information package at Siemen
Limited, Siemens House, Windmil Road, Sunbury on Thames, Middlesex.

Maritime communications. New frontiers.
 Inmarsat - providing a revolutionary
 With an investment of US
 We need specialists experienced

\{25,000?
SYSTEMS ENaIMEER equipmen: f10,000+- Surror. RF DESIGN Enginar to dorsign ower amplifies up Hanta. DESIIN ENGINEER -surrey. DEVELOPMENT ENEINEER tions systems from base band to 6 GHz . To $\mathbf{f 1 0 , 0 0 0}$ - Essex. DESIGN ENGINEER ENGINEER For RF Transponder in radar project, controlling 2 staff, $\mathbf{£ 1 0 , 0 0 0 + - S u r r e y .}$ CLIVEDEN CONSULTANTS Surnana Winds CLIVEDEN ELECTRONICS Specialists in RF communications, digital and low frequency anal- a design and development Engiexperience. $£ 7,250$ to $£ 8,000$ per annum. Ring 01-250 0894

aer. Remuneration according
perience. $£ 7,250$ to $£ 8,000$
pe
rim. Ring 01-250 0894
global satellite communications global satellite comm
service - is now live.

Today over 1,000 ships and offshore oil and gas platforms are equipped with Inmarsat shipboard terminals giving them direct a
our communication satellites.

Today all the world's oceans are covered whatever the weather,
24 hours a day, 7 days a week. Maritime
 $\$ 300 \mathrm{~m}$ and the participation of 37 countries, Inmarsat has one of the most innovative systems yet devised. But we are not complacent. Not only
are we dealing with today's system are we dealing with today's system particular to the design, development and implementation of the second generation Inmarsat system. This is where you come in.

As an experienced Electronics
in spacecraft and launch vehicles, satellite payload design, digital communications technology, earth sophisticated shipboard electronic equipment.
Depending upon your speciality and experience you will be involved in a full range of satellite communications engineering particularly development of new and innovative communications services and new generations of satellites. You will be a graduate with substantial experience in your chosen field. You will be active, creative, and willing and able to develop your own role and initiate your own
responsibilities to meet demands Other languages would The Inmarsat salary and asset. The inmarsat salary and benefi package is highly attractive. As a
member of our international staff, your salary-starting in the range $£ 12,900-£ 21,000$ - will be net oftax Relocation expenses will also be provided.

These appointments are immediate. So for a personal history form apply to the Personnel Manager, Inmarsat, Market Towers, 1 Nine Elms Lane, London, SW8 5NQ, England.

- inmarsat

ENGINEERS

c $£ 8000$ p.a.

Coventry

The present level of world demand for advanced telecommunications technology holds

 great potential forAs part of ateam of Contract Engineers you will be specifying for manufacture, avariety of transmission equipments, such as: telegraph and channet equipment, translating and generating equipment, coaxial and optical fibre line systems, baseband, switching, supervis
19 GHz .
Also, you willdesign interface wiring diagrams for equipment racks and repeaterstations Prepare station and system schematics. Supervise design interfaces of civil works, including prime power equipment, buildings and microwave towers.
In addition to interesting and varied work you'll be receiving acompetitive salary plus big company benefits which include a generous relocation Dackage where appropriate.
You'll find all the big-city amenities in coventry, including some outstanding
facilities - and you'll be surprised by the wide range and low cost of housing.

SCHOOLOF ELECTRICALAND
ELECTRONIC ENGINEERING Applications are invited for the post SENIOR LABORATORY WORKSHOP TECHNICIAN Applicants should possess a good liectricien and experience in electrica-
lelectronic repair or maintenance. Salary Grade: T2 (15-18) £5064 to e5526 pus up to $£ 108$ per annum fo

Application forms and further de

Ref. No. NT/81/82/24.
Closing date: 28 th May 1982.

SIRECTORATEOFTELECOMMUNICATIONS WIRELESS TECHNICIANS

$$
\begin{aligned}
& \text { E7,060 } \\
& \text { costs }
\end{aligned}
$$

Aphlieation forms and further information are obtainable from Scortish
OOfficer Personnel Division Roo 1110,16 Waterlo Place, EEinburgh EH1 Closing date for receipt of completed application forms is 14 May,

NO
 CONCESSION TO RECESSION!

In communications, the industry of the 21st Century, the BBC is forging ahead ear we are seeking 150 young, enthusiastic Engineers both in London and throughout he United Kingdom to work in the expanding field of Television.
The ability to handle new technology ong before it appears in other industries, a thorough understanding of traditional electronics and the motivation to have found out about Broadcasting technology together with the right personality are just some of the qualities we are seeking. Many have already accepted already accepted the challenge and joinedus, butthere are vacancies in the Television Service, London for those men and women qualities.If you are qualified, qualified, with a Degree in Electrical and Electronic Engineering, Applied Physics or equivalent and have both normal hearing and colour vision why not fill in the coupon for further details, quoting eference number 82.E. 4029 /W.W. Starting salary in the Television Service, London is in the range $£ 7314$ to $£ 7892$ plus shift working allow between $£ 800$ and $£ 1000$ pa.
We are an equal opportunit
\section*{TELEVISION ENGINEERS}

Appointments

OTC ${ }^{2}$ (ECHNICAL STAFF

Would you like an opportunity to live in Australia and pursue a career in Telecommunications?
The Overseas Telecommunications Commission (Austraial which inks Austraia with the rest of the worda coons submarine cables
Tnd radio has vacancies for Technicians and Technical Office
The successful applicants will be involved in one of the following areas in the operation and main

- processor controlled switching and transmission equuipment in the Sydney Metropolitan area
international satellite communication nacilitites at Carnarvon - Western Austrailia, Ceduna - South Austratia and Moree - New South Wales.
ind
-submarine cable and HF radio facilities al Commission stations situated on the Austrain

$$
\begin{array}{ll}
\text { Technician } & \text { REMUNERATION: } \\
\text { Technical Officer Grade 1 } & \$ A 1405-16080 \text { p.a. } \\
\text { Technical Officer Grade 2 } & \$ A 14805-17759 \text { p.a. } \\
\text { Senior Technical Officer Grade 1 } & \$ A 18180-19086 \text { p.a. } \\
\$ A 19597-20517 \text { p.a. }
\end{array}
$$

QUALIFCATIONS
\$A19597-20517 p.a.
Instiutue

General:
OTC offers excellent working conditions. At most locations staff work rostered shifts with a 9 -day fortnight and attractive shift penalties are applicable.
Good opportunitites exist for advancement to higher positions. Successul applicants must be prepared to serve at any of the Commission's stations with

The Director, Personnel and Administration Branch,
Overseas Telecemmunications Commission (Australia),

Applicants will be supplied with an information leaftet giving full details of the
OTC Representatives will be conducting interviews in the United Kingdom.

Electronic Engineers-
 What you want, where you want

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware
of your application.

TJB ELECTROTECHNICAL

PERSONNEL SERVICES
12 Mount Ephraim
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388 TJB

Please send me a TJB Appointments Registration form:
Name .
Address .
 SERVICE
ENGINEER We are an expanding Television
Rental and Retail company yith a Rental and Retail company with
vacancy for an additional Televi-
sicancer sion Service Engineer.
 or be training towards this qualifil
cation. The post is directly responsible
to the A clean driving licence is essen-
tial. A spac
quired. quired.
Hydes of Chertsey Ltd. 5660

$$
\square
$$

DIGITAL EXPERIENCE? FIIEL SUPPORT VACANCIIS IN COMPUTERS NC, COMMS., MEDIC
For free registration
0455
01.2983026264
LOGEX

Appointments

Systems Assembly/ Test Engineer

Granger Associates is a leader in the Communications Equipment Industry manufacturing and marketing a
wide range of sophisticated UHF Radio, Multiplex and SCADA products. Continuing expansion has created a vacancy for a Systems Assembly/ and system test of Radio/Multiplex terminals and therefore demands a high degree of responsibility. The successful candidate must be self-motivated
and have at least two years' experience in the UHF and have at least two years' experience in the UHF
and F.D.M. field.
Salary will be in the region of $£ 8,000+$ per annum with excellent prospects for advancement within the
Company. Company.
Please write in the first instance with full particulars
preferably CV) (preferably CV) to the following address:
Mrs. L. M. Tabb

Granger Associates Limited
1 Brooklands Road
Surrey KT13 OSD

Gragsoctates Lita
 Solutions for Telecommunications

Powerful and advanced computer based work stations Manchester Salaries negotiable

Engineers \& Scientists
 \&8,589

Communications R\&D... ...the leading edge

At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, destiow of essential information.

The work is of the highest technical challenge offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, , propagation
studies, applications of Microcircuitry.
ACOUSTICS SIGNAL ANALYSIS MAGNETICS SYSTEMS ENGINEERING Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a also apply.
Appointments are as Higher Scientific Officer
$(\{6,530-£ 8,589)$ or Scientific Officer $\{55,176$ O $£$. according to qualifications and experience Promotion prospects. $\stackrel{\text { Fosperts. }}{ }$
For an application form, please write to the Comt Communications Centre, Hanslope Par

DESIGN \& MANUFACTURING ENGINEERS

SALARY RISES DISAPPOINTING?
 ToE15,00. South Coast.
CONSULTANT PROGRAMMERS
 -or TV and video products \& SW SW ENGINEERS
 YOUNG DESIGN/DEVELOPMENT ENGINEERS

Charles Airey Associates rempo House, 15 Falcon Road, Battersea Tel: $01-2237662$ or 2286294

Electronic Engineering

Dolby Laboratories, the world famous audio noise reduction company, was founded by an engineer. We are
a company that believes in engineers and engineering a company that believes in engineers and engineering.
Small enough for you to make a contribution, we have t minimum bureaucracy, are well established, and have a minimum bureaucracy, are well estab
track record of innovation and quality.
Assistant Production Manager (Male or femate)
A nomuter based prosition to support the implementation of
Electronics Engineer
Electronics Engineer
Production Engineers \& Technicians Expansion of a well established department to support products.

To join our well supported test group and fault find, when all else fails!
Q A Engineer \& Technician
Opportunities to join our newly established QA group. Applicants for the senior positions need to be experienced graduates.
benefits package
Contact Steve Matta, by phone or in writing, at:
Doiby Laboratories
346 Clapham Road,
London SWW.
$01-7201111$

ELECTRONICS ENGINEER
 -CALIBRATION

An opportunity exists in a small but thriving Not-tingham-based company for a senior engineer to upgrade the company's calibration laboratory to BCS standards. Suitable applicants will therefore have knowledge of, and experience, with BCS

Prospects are excellent as the company is expanding rapidly and this position would suit a person ing rapidly and this position would suit
wishing to develop his or her potential.

Apply for full details, enclosing your CV, to:
DMR LTD.
Unit 19, Salisbury Square
Nottingham NG7 2AB

Appointments

ENJOY BEING SUCCESSFUL WITH QUANTEL

Quantel Limited has achieved a worldwide reputation as the foremost Company in Digital Video products for require further engineers to join our team in Newbury, Berkshire.

TEST ENGINEERS

We are looking for Test Engineers to be responsible for checking through and commissioning a wide range of advanced electronic assenbilies. he abiity an advantage. Candidates should be qualified to at least HNC standard but candidates studying for a TEC

JUNIOR SERVICE ENGINEER

We require a young person with previous test or ser-
vice experience to assist in servicing complex video vice experience to assisuipment to component level. A qualification at TEC level is useful but not essential as one or two years relevant experience is more i portan

If you are interested in joining our team, please tele-
phone or write for an application form to:
The Group Personnel Officer, Quantel Limited, 17-20 West Mills, Ne
48222, Ext. 308

EOCIAL SERVICES DEARTMEN
 TEGMAR PiUDUGION ASSSTANT £8,190-£9,52

 BRIGHTON A newly created post in the Training/Develop ment Section. Part of the Section's work includes the produc-tion of audio/ visual subjects as diverse as training materials on subjects as diverse as child care practice, under
standing mental illness, health and satety work, the care of the mentally and physicaly handicapped, management techniques etc. All hese productions are designed specifically to Social Services staff.
The Engineer will be part of a a high degree of commitment and team - and essential as technical competence. energy is Tasks will include: i) the maintenance of nea broadcast quality ENG video camera and recorder, editing suite and portapaks, as well as a pool of audio-visual equipment; ii) the operation of video and audio equipment as part of a smal production team producing hig quality vide Qualifications: Degree in engineering subject Experience in broadcasting and education, both in an engineering and production capacity;Ope rational experien be an advantage
606622 ext. 253. Ples: Yvette Vanson, Brighto Application forms imm quote post No. 7060D. Section, Socialns immediately from Personne East Su, Social Services Department
East Sussex County Counci
County Hall, St. Anne's Crescent
Lewes, Sussex BN7 1SG
Closing date for applications June 11, 1982

CIVIL AVIATION COLLEGE
(GULF STATES)
requires
INSTRUCTORS - AVIATION ELECTRONICS
Qualified and experienced in installation and maintenance of modern aviation radio ystems, extensive instructional exper ence at Technician Level Courses
Salary and allowances up Dollars 3,400 per month
Please enquire for details
Civil Aviation College (Gulf States)

Attention: Principal - Mr. Jassim Al Nusf

NATO HEADQUARTERS ALLIED FORCES ost Box 270 CENTRAL EUROPE Applications are invited from quallands permanent civilian posts of: One FIELD SERVICE TECHNICIAN in a travelling team maintaining an international microwave telecommunications system. Home base near Aachen, GerOne PRINCIPAL TECHNICIAN

Computer-aide
duty station Birkenfeld.
Competitive insage Processing Systems Competiti
scheme. than 14 days after the with short curriculum vitae, not later than 14 days after the publication of this advertisement, to
Civilian Personnel Officer, HQ AFCENT.

WIRELESS WORLD JUNE 1982

Technicians in

 CommunicationsGCHQ We are the Government Communications
is R \& D in all types of modern radio
commun
THE JOB All aspects of technician support to an
-
technology.

- cocation
attractive Cotswolds and elsewhere in the UK
- opportunities for service abroad.
- PAY Competitive rates, reviewed regularly.

Relevant experience may count towards
TRAINING We encourage you to acquire new

- skills and experience.
- QUALIFICATIONS You should have a TE
- Certificate in Telecommunications, or

HOW TO APPLY For full details on this and
information on our special scheme for those

- information on our special scheme for those
- Recruitment Office
- GCHO, Oakley, Priors Road, Cheltenham
or ring
- $\begin{gathered}\substack{\text { orfring } \\ \text { orta } \\ \text { ext } 22691} \\ \text { ext }\end{gathered}$
-60
TRIIITY HOUSE LIGHTHOUSE SERVICE, LONDON ELECTRICAL ENGINEER
Applicants must have had a sound training in radio and light current work
associated with
and
and control symF and MF communications, remote monito

 programming and microtechnology would be an advantage.
Possession of a degree in electronics/radio engineering or equivalent is
required. Since MMS first took root, we have achieved an a past four years we're now w
growth Having uadrupled our turnover over the
placed to double it again over the next few. A member of the worldwide Mars placed to double it again over the next few. A member
Group, we are, in fact, one of Europe's fastest growing electronics companies
with a range of highty sophisticated products which are both advanced in design and innovative in application. With the recent setting up of a brand new company to develop, manufacture and market specialist marine equipment, we have an immediate need for an additional man or woman to join us.
For this position we're looking for someone in their early 20 s , with a good dualification or a keen an electro-mechanical environment, and preferably a radio. City and Guilds or HNC qualifications combined with two years' mechanical design experience is called for and a knowledge of fully automated It's an exciting and challenging time and ifyou have it in you to develop your Wright for you, and for us. pension scheme and Christmas bonus.
y you're looking for career growth, contact Nigel Purse,
Personnel Officer, MMS, 226 Bat Personnel Officer, MMS, 226 Bath
Road, Slough, Berks. SLI 4DE. Tel. Road, Slough, B
Slough 70921.

WIRELESS WORLD JUNE 1982
required.
Generous leave allowance, pension scheme and flexible working hours.
Apply to The Establisisment Officer Trinity House Lighthouse Service, Apply to The Establishment Officer, Trinity House Lighthouse Service,
Tower Hilit, London EC3N 4DH or telehhone 01-480 6601 Ext. 289. (1632)

 \square $y=\frac{7}{7}$

${ }^{2} 1$

 Gratings, diroct for for
Stock. We cann cut os siza.
GRAEPEL PERFORATORS

Cassified

चレロix
ELECTRONIC DEVELOPMENT ENGINEER

Audix Limited manufacture a wide range of professional audio equipment used in radio and
studios and public address systems, worldwide. We studios and
wish to expand our design and development section
by recuiting a young engineer, preferably with two or by recruiting a young engineer, preterably with rwo or
three years' practical experience. Ideally, we require a three years practical experio engineering knowledge, graduate experience in analogue and digital circuit design and some familiarity with micro-processor appications.
For further information please write or telephone: Mr . J. S. Miller at Audix Limited, Station

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS
BULK BUYERS, ETC. TO BULK BUYERS, ETC. LARGE QUANTITIES OF RADIO, TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
 MICS, PLATE CERAMICS, etc. ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE,
CABLES, SCREENED WRE, SCREWS NUTS,' CHOKES, TRANSFRRALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDINS CAVE TELEPHONE: 445 0749/445 2713 BROADFIELDS \& MAYCO DISPOSALS
Lodge Lane, North Finchley, London, N. 12

WANTED!
 all types of scrap and REDUNDANT ELECTRONIC 8 COMPUTER MATERIALS
 TRANSISTORS
 \& PRINTED CIRCUIT BOARDS
 TO COMPLETE
 COMPUTERS
 THE COMMERCIAL
 TW ELECTRONICS LTD.
 THE PCB ASSEMBLERS
 assurance FFor furthe works:

REFININGGG. Ltd.
71 FARRINGDON ROAD
LONDON EC1R 3 AL
Tel: $01-8371475$

WNANTED

CIRCOLEC
THE COMPLETE ELECTRONIC SERVICE Artwork, Circcuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy,
Ouality workmanstip by professionals at economic prices
Please etelephone $01-767$ 1233 for advice of further details. 1 FRANCISCANROAD
TOOTING, LONDONSW17

Micro Processor Design Our team of experts offer
 Artwork - Prototype Development \bullet Testing ore intormaton onneact Merer Consom 1

Use this Form for your Sales and Wants
please insert the advertisement indicated on form below

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. ,Tel: Godstone (0883) 843221

INDEX TO ADVERTISERS JUNE

Appointments Vacant Advertisements appear on pages 114-127

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has features unique to any temperature controlled precision soldering iron. Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ by setting a dial in the handle without changing tips.

This eliminates the need for temperature measuring equipment. You get faster and better soldering.
For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.
The Oryx TC 82 is also extra-safe. Removing the handle automatically disconnects the iron from power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles.

And more good news

The Oryx TC 82 iron costs only $£ 13.00$ (+VAT) and the power unit for 24 V operation $£ 23.00$ (+VAT).
The TC82 240 volt is also available as a 30 watt general purpose iron at only $£ 3.95$ (+VAT).

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 INE. Telephone: (0734) 595844. Telex: 848659

[^0]: WIRELESS WORLD JUNE 1982

[^1]:
 I Pleases send me.

